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Anomaly Detection (AD)

What is Anomaly Detection ?

”Finding patterns in the data that do not conform to expected
behavior”



Machine Learning context

Different kind of Anomaly Detection

• Supervised AD
- Labels available for both normal data and anomalies
- Similar to rare class mining

• Semi-supervised AD
- Only normal data available to train
- The algorithm learns on normal data only

• Unsupervised AD
- no labels, training set = normal + abnormal data
- Assumption: anomalies are very rare
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Anomaly Detection Schemes

• Step 1: Learn a profile of the ”normal” behavior
Profile can be patterns, summary statistics,...

• Step 2: Use the ”normal” profile to build a decision
function.

• Step 3: Detect anomalies among new observations.
Anomalies are observations whose characteristics differ
significantly from the normal profile



General idea of our work

• Extreme observations play a special role when dealing with
outlying data.

• But no algorithm has specific treatment for such
multivariate extreme observations.

• Our goal: Provide a method which can improve
performance of standard AD algorithms by combining them
with a multivariate extreme analysis of the dependence
structure.





Towards high dimension
Main idea :

Sparsity Assumption on the dependence structure:

Small number (<<< 2d ) of
”groups of coordinates which can be large together”

Our Goal:
Learn the sparsity pattern of the dependence structure

Applications:

• Detecting Anomalies with Multivariate Extremes
(DAMEX): anomalies = points violating the sparsity pattern.

• Dimension reduction If furthermore only a moderate
number of Xj ’s may be large together. Preliminary step
before inference of the joint distribution of extremes.
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Framework

• Context
I Random vector X = (X1, . . . ,Xd )

I Margins: Xj ∼ Fj (Fj continuous)

• Preliminary step: Standardization of each marginal

I Standard Pareto: Vj =
1

1−Fj(Xj)

(
P(Vj ≥ x) = 1

x , x ≥ 1
)



Problematic
Joint extremes: V’s distribution above large thresholds?

P(V ∈ A)? (A ‘far from the origin’).



Fundamental hypothesis and consequences

• Standard assumption: let A extreme region,

P[V ∈ t A] ' t−1P[V ∈ A] (radial homogeneity)

• Formally,

regular variation (after standardization):

0 /∈ A

tP[V ∈ t A] −−−→
t→∞ µ(A), µ : exponent measure

Necessarily: µ(tA) = t−1µ(A)

• ⇒ angular measure on sphere Sd−1: Φ(B) = µ{tB, t ≥ 1}



General model in multivariate EVT

Model for excesses
For an extreme region A:

P[V ∈ A] ' µ(A)

⇔ For a large r > 0 and a region B on the unit sphere:

P
[
‖V‖ > r ,

V
‖V‖

∈ B
]
' 1

r
Φ(B)

⇒ Φ (or µ) rules the joint distribution of extremes (if
margins are known).



Angular distribution

• Φ rules the joint distribution of extremes

I Asymptotic dependence: (V1,V2) may be large together.

vs

I Asymptotic independence: only V1 or V2 may be large.
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Dependence structure

Full pattern : Sparse pattern
anything may happen (V1 not large if V2 or V3 large)

• Sub-cones:
Cα =

{
‖v‖ ≥ 1, vi > 0 (i ∈ α), vj = 0 (j /∈ α)

}
• Corresponding sub-spheres:

{
Ωα, α ⊂ {1, . . . ,d}

}
(Ωα = Cα ∩ Sd−1)



Representation of extreme data

M =
{
Φ(Ωα) : ∅ 6= α ⊂ {1, . . . , d }

}
=
{
µ(Cα) : ∅ 6= α ⊂ {1, . . . , d }

}

Assumption: dΦ|Ωα

dvα = O(1).

RepresentationM is natural and linear (after non-linear
transform of the data X→ V).
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Problem: M is an asymptotic representation

M =
{
Φ(Ωα), α

}
=
{
µ(Cα), α

}
is the restriction of an asymptotic measure

µ(A) = lim
t→∞ tP[V ∈ t A]

to a representative class of set {Cα, α}, but only the central
sub-cone has positive Lebesgue measure!

⇒ Cannot just do, for large t :

Φ(Ωα) = µ(Cα) ' tP̂(tCα)



Solution

Fix ε > 0. Affect data ε-close to an edge, to that edge.

Ωα → Ωεα = {v ∈ Sd−1 : vi > ε (i ∈ α), vj ≤ ε (j /∈ α)}.
Cα → Cεα = {tΩεα, t ≥ 1}

New partition of Sd−1, compatible with non asymptotic data.



V̂ j
i = 1

1−F̂j (X
j
i )

with F̂j(X
j
i ) =

rank(X j
i )−1

n

⇒ get an natural estimate of
Φ(Ωα)

Φ̂(Ωα) :=
n
k
Pn(V̂ ∈

n
k
Cεα)

(
n
k

large, ε small)

⇒ we obtain
M̂ :=

{
Φ̂(Ωα), α

}
Theorem:

‖M̂−M‖∞ ≤ Cd

(√
1
εk

log
d
δ
+ Mdε

)
+ bias(ε, k ,n),



Algorithm

DAMEX in O(dn log n)
Input: parameters ε > 0, k = k(n), Φmin ≥ 0.

1 Standardize via marginal rank-transformation:
V̂i :=

(
1/(1 − F̂j(X

j
i ))
)

j=1,...,d .

2 Assign to each V̂i the cone Cεα it belongs to.
3 Compute Φα,εn := Φ̂(Ωα) =

n
k Pn(V̂ ∈ n

k C
ε
α) the estimate

of the α-mass of Φ.
4 Set to 0 the Φα,εn below some small threshold Φmin ≥ 0

to eliminate cones with negligible mass
Output: (sparse) representation of the dependence
structure

M̂ := (Φα,εn )α⊂{1,...,d},Φα,εn >Φmin



Sparse low-dimensional representation?
(Shell Research, and thanks J. Wadsworth)

data=50 wave direction from buoys in North sea.



Application to Anomaly Detection
After standardization of marginals: P[R > r ,W ∈ B] ' 1

r Φ(B)

→ scoring function = Φεn ×1/r :

sn(x) := (1/‖T̂ (x)‖∞)
∑
α

Φα,εn 1T̂ (x)∈Cεα
.

where T : X 7→ V (Vj =
1

1−Fj (Xj )
)
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number of samples number of features
shuttle 85849 9
forestcover 286048 54
SA 976158 41
SF 699691 4
http 619052 3
smtp 95373 3

Table: Datasets characteristics



Figure: ROC and PR curve on forestcover dataset
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Figure: ROC and PR curve on smtp dataset



Figure: ROC and PR curve on SF dataset



Figure: ROC and PR curve on shuttle dataset



Figure: ROC and PR curve on SA dataset
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