On Anomaly Ranking and Excess-Mass Curves

Nicolas Goix

Anne Sabourin

Stéphan Clémençon

Motivation

No ROC curve in unsupervised learning!

• Anomaly Detection: needs for ranking the observations according to their degree of abnormality. Scoring function:

$$s: \mathcal{X} \to \mathbb{R}_+$$

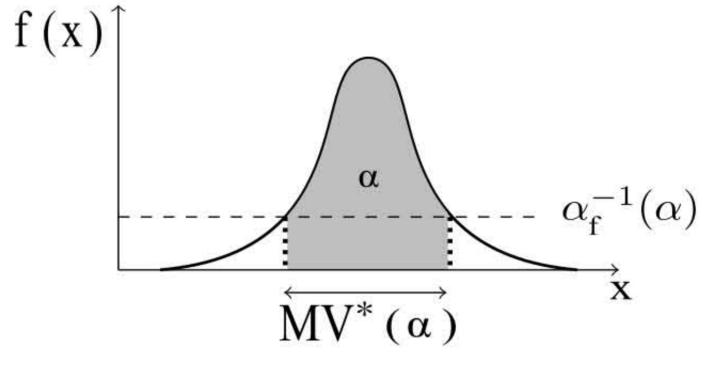
The "smaller" the score s(X), the more "abnormal" the observation X is viewed Linked with density level sets estimation ([1], [2])

- How to know if a score is good or not? How to compare two scoring functions?
- How to build such scoring function?
- Need for a Criterion to evaluate the quality and to be optimized in the process of building a scoring function.

Existing Work

- Mass-Volume Curve ([3]) $\alpha \in (0,1) \mapsto MV_s(\alpha) = \lambda_s \circ \alpha_s^{-1}(\alpha)$ where $\alpha_s(t) = \mathbb{P}(s(X) \ge t)$ and $\lambda_s(t) = Leb(\{x \in \mathcal{X}, s(x) \ge t\})$
- Optimal MV curve:

$$MV^* := MV_f$$



Drawbacks:

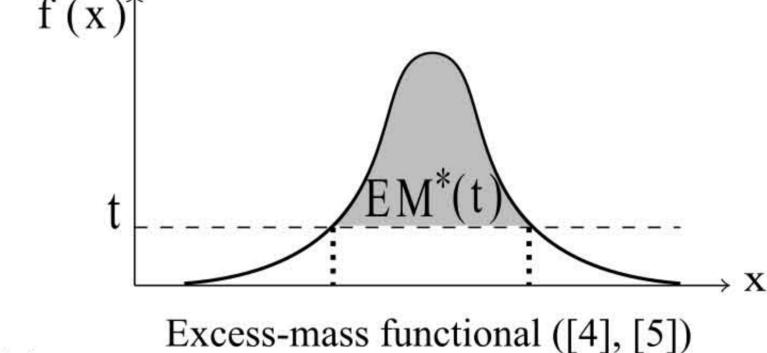
- As an evaluation criterion: pseudo-inverse may be hard to compute
- As a building criterion: produce level sets which are not necessarily nested.

A novel criterion: the Excess-Mass Curve

• EM curve of a scoring function $s: \mathcal{X} \to \mathbb{R}_+$:

$$EM_s(t) := \sup_{u \ge 0} \mathbb{P}(s(X) \ge u) - tLeb(s \ge u)$$

$$EM^* := EM_f(t) = \mathbb{P}(f(X) \ge t) - tLeb(f \ge t)$$



For all score s: $EM^* \geq EM_s$

 $EM^*(t) - EM_s(t) \le ||f||_{\infty} \inf_{u>0} Leb(\{s>u\}\Delta\{f>t\})$

pseudo distance between the level sets induced by s and those induced by the true underlying distribution f.

 $||EM^* - EM_s||_{\infty}$ pseudo distance between s and f "in the space of scoring function"! (In this space, $s = T \circ s$ for every increasing transform T) $||EM^* - EM_s||_{\infty} \le C \inf_{T \nearrow} ||f - T \circ s||_{\infty}$

Practical criterion:

$$\widehat{EM}_s(t) = \sup_{u \ge 0} \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{s(X_i) \ge u} - tLeb(s \ge u)$$

Evaluation criterion: s_1 better than s_2 if $\widehat{EM}_{s_1} \ge \widehat{EM}_{s_2}$ — Main drawback: Monte Carlo for $Leb(s \ge u)$

Criterion for M-estimation: maximize \widehat{EM}_s \longrightarrow $s \in ?$ maximize $\widehat{EM}_s(t) \ \forall t \ ?$

M-estimation

Formulation

• Optimal solution of maximize EM_s : any function s with $\Omega_t^* := \{f \geq t\}$ as level sets. For instance : $s(x) = \int_{t=0}^{+\infty} \mathbb{I}_{x \in \Omega_t^*} a(t) dt$ with a(t) > 0.

Fix
$$0 < t_K < t_{K-1} < ... < t_1$$

maximize
$$\widehat{EM}_{s_N}$$
 where $s_N(x) = \sum_{k=1}^N (t_k - t_{k+1}) \mathbb{I}_{x \in \Omega_{t_k}}$ (then we have: $\Omega_{t_k} = \{s \ge t_k\}$)

Theoretical results

Assumptions:

The density f has **no flat parts**, is **bounded**.

The class \mathcal{G} has \mathbf{VC} -dim $< \infty$

For bias control:

There exists a countable subcollection of \mathcal{G} , $F = \{F_i\}_{i\geq 1}$ say, forming a partition of \mathcal{X} and such that $\sigma(F) \subset \mathcal{G}$.

Theorem: Let an integer N > 0 and s_N the scoring function returned by the algorithm. Then with proba larger than $1-\delta$:

$$\sup_{t \in]0,t_1]} |EM^*(t) - EM_{s_N}(t)| \le \left[A + \sqrt{2\log(1/\delta)} \right] \frac{1}{\sqrt{n}} + ||f - f_F||_{L^1} + o_N(1),$$

$$\sup_{t \in]0,t_1]} |EM^*(t) - EM_{s_\infty}(t)| \le \left[A + \sqrt{2\log(1/\delta)} \right] \frac{1}{\sqrt{n}} + ||f - f_F||_{L^1}$$

where $o_N(1) = 1 - EM^*(t_N)$. The support of f may be non compact.

Bias: $||f - f_F||_{L^1}$

 f_F the best approximation (for the L_1 -norm) of f by piecewise functions on F, $f_F(x) := \sum_{i>1} \mathbb{I}_{x \in F_i} \frac{1}{Leb(F_i)} \int_{F_i} f(y) dy$.

Experiments

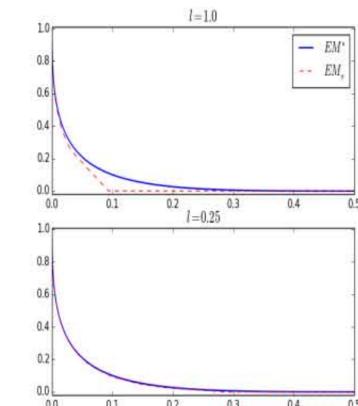


Figure 4: Optimal and realized EM curves

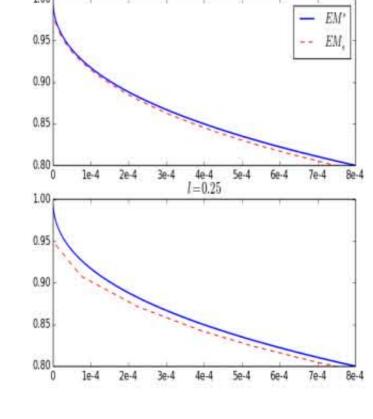


Figure 5: Zoom near 0

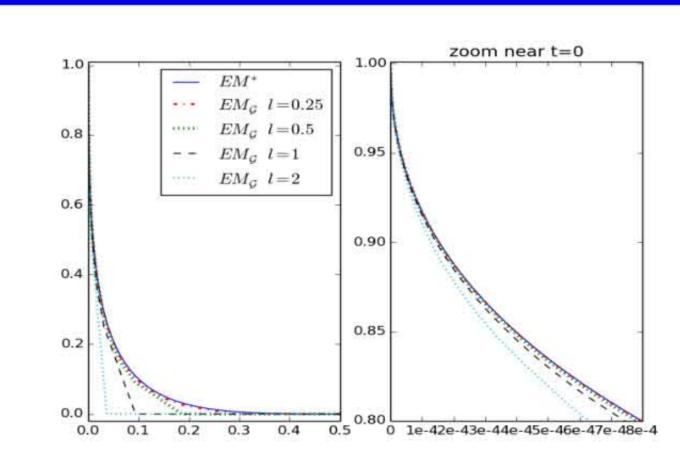


Figure 6: EM_G for different I

References

- C. Scott and R. Nowak. Learning Minimum Volume Sets. Journal of Machine Learning Research, 7:665–704, 2006.
- J.P. Vert and R. Vert. Consistency and convergence rates of one-class syms and related algorithms. JMLR, 6:828–835, 2006.
- [3] S. Clémençon and J. Jakubowicz. Scoring anomalies: a M-estimation approach. 2013.
- [4] W. Polonik. Measuring mass concentrations and estimating density contour cluster-an excess mass approach. The annals of Statistics, 23(3):855–881, 1995.
- D.W. Müller and G. Sawitzki. Excess mass estimates and tests for multi-[5] modality. Journal of the American Statistical Association, 86(415):738–746, 1991.