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Motivation Existing Work
No ROC curve 1n unsupervised learning ! ® Mass-Volume Curve ([3]) a € (0,1) = MVy(a) = A

e Anomaly Detection: needs for ranking the observations according to where as(t) =P(s(X) >1) and  As(t) = Leb({z € X, s(z)

their degree of abnormality. Scoring function: f(x)]
s X RJr e Optimal MV curve:

The "smaller" the score s(X), the more "abnormal" the observation X is viewed MV* =M Vf
Linked with density level sets estimation ([1], [2])

e How to know 1f a score 1s good or not? How to compare two scoring Dirsvwhacks: MV* (a)

functions ? . . .
e As an evaluation criterion: pseudo-inverse may be hard to compute

e How to build such scoring function * e As a building criterion: produce level sets which are not necessarily

e Need for a Criterion to evaluate the quality and to be optimized 1n nested.
the process of building a scoring function.

A novel criterion: the Excess-Mass Curve
f(x)]

e EM curve of a scoring function s: X - Ry :
EM(t) := sup,>o P(s(X) > u) — tLeb(s > u)

For all score s:
EM* > EM,

EM* := EM;(t) = P(f(X) > t) — tLeb(f > t) t

_ Excess-mass functional ([4], [5])
| EM*(t) = EM,(t) <||f||oo infuso Leb({s > u}A{f > t})
= | pseudo distance between the level sets induced by s and those induced by the true underlying distribution f.

== pseudo distance between s and f "in the space of scoring function"! (In this space, s =1 0s for every increasing transform T)

|EM* — EM;|loo < Cinfrp ||f =T 05|

.

® Practical criterion:

m=) Evaluation criterion: s, better than s, if EM 8 = EM s, — Main drawback: Monte Carlo for Leb(s > u)

== Criterion for M-estimation: mﬁXngize EM, —— s€? maximize EM s(t) Vt 7

M-estimation
Formulation Theoretical results
_ | . | | ) Assumptions:
e Optimal solution of IIlEleHSllZfJ E M, : any function s with Q7 := {f >t} as The density f has no flat parts, is bounded.
level sets. For instance : s(z) = ;EO [.eqra(t)dt with a(t) > 0. The class G has VC-dim < oc
Fix 0<tg <tg_1<..<t For bias control:

There exists a countable subcollection of G, F' = {F;};>1 say., forming a
partition of X and such that o(F') C G.

( then we have: Q; = {s>1tr} ) Theorem: Letaninteger N >0 and sy the scoring function
returned by the algorithm. Then with proba larger than 1 -4 :

1

sup ] \[EM™(t) — EM,, (t)] < A+ \/210g(1/5)_ + ||f = frllzr +on (1),

te]0,ty \/;
« , [ 1 1
Sup |EM*(t) — EM, ()] < [A+V2log(1/0)] —=+If = frllc
.- ~ 1 5 y 1 -
Algorithm : fork =1 N th — argnéa%{m_ n Zizl Ix,eq — tk Leb(Q) where oy (1) =1 — EM*(ty). The support of f may be non compact.
tht1 = =4 Bias: ||/ — frllz
(1+7)" fr the best approximation (for the L;-norm) of f by piecewise functions on F,

fr(z) = Ziy lzer, Le_b]{ﬂ) [p J(y)dy .
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