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Motivation
Learning the Dependence Structure of Rare Events

• Extreme Value Theory (EVT) for ML
I Learning the unusual
I 6= averaging effect / mean behaviour
I → application to Anomaly Detection

• EVT by Statistical Learning
I VC-type bounds for estimating the Asymptotic

Dependence Structure.

• Context
I Random vector X = (X1, . . . ,Xd )

I Margins: Xj ∼Fj (Fj continuous)

• Preliminary step: Standardization of each marginal
I Standard Pareto: Vj =

1
1−Fj (Xj )

P(Vj ≥ x) = 1
x , x ≥ 1

P(V ∈A)? (A ‘far from the origin’).

Framework and Extreme Dependence Structure

⇒ Anomaly Detection:
• µ or φ = ”normal behaviour” in extreme regions
• → precision in extreme regions - better false alarm rate

Goal:

Fundamental hypothesis and consequences
Standard assumption: let A extreme region,

P[V ∈t A] ' t−1P[V ∈A] (radial homogeneity)
Formally,

regular variation (after standardization):

Necessarily: µ(tA) = t−1µ(A)

⇒ angular measure on sphere Sd−1: Φ(B) = µ{tB, t ≥ 1}

The Standard Tail Dependence Function (STDF)

Why considering the STDF ?

Problem: Hard to study deviation of empirical µ̂n (or φ̂n)
(existing work: d = 2)

Idea: Consider the restriction of µ to a convenient VC-class:

stable tail dependence function (STDF)

l(x) = µ([0,x−1]c)

The STDF l is an analytic tool:
• knowledge of l ⇒ knowledge of µ ⇒ structure of extremes
• ‘trick’: allows to work on rectangles

Intuition behind the STDF

Two rare events
X1 ≥ x1
X2 ≥ x2

with small proba
p1
p2

Suppose that we know p1 and p2. Investigate:

p12 = P(X1 ≥ x1 or X2 ≥ x2)

STDF l verif es:
p12 ' l(p1,p2) (if p1 and p2 small enough)

stdf
VC-class

spectral measure

Conclusion

• Learning theory adapted to multivariate EVT

• Tools for the study of low probability regions

• Pave the way to the use of multivariate EVT in machine
learning and anomaly detection (ongoing work)

Estimation of the STDF

Related work and goal

• Results on l: asymptotic normality, under smoothness
assumption.

• Goal: Derive non-asymptotic bounds with no assumption
other than existence (Leftrightarrow regular variation
Assumption).

Experiments
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