Learning the Dependence Structure of Rare Events:
a Non-Asymptotic Study
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Motivation Framework and Extreme Dependence Structure
* Context G | model in multivariate EVT
Learning the Dependence Structure of Rare Events ' Random vector X = (X, ..., Xq) Ioces variae

' Margins: X; ~F; (Fj continuous) _
o L _ For an extreme region A: P[Ve A ~ u(A
- Preliminary step: Standardization of each marginal

& For alarge r > 0 and a region on the unit sphere B:

' Standard Pareto: Vj = —grzy  P(Vjzx) =3, x =1
\Y 1
: c i’ P||V|>r, — €B| ~ -®(B
* Extreme Value Theory (EVT) for ML Goal: P(VEA)? (A far from the origin’). V> el = Lo
I Learning the unusual Fundamental hypothesis and consequences ja%i(nosf ;‘r)ert:;ﬁvﬁ;e joint distribution of extremes (i
| = averaging effect / mean behaviour Standard assumption: let A extreme region, V2| | V2
I — application to Anomaly Detection o PIV EtA] = t7'P[V €Al (radial homogeneity) B x
ormally, S
regular variation (after standardization): b NG % L
* EVT by Statistical Learning 0¢ A | ‘ '_ \4 L
tPlV et Al — u(A4), t — oc. (L exponent measure Vi Vi

I VC-type bounds for estimating the Asymptotic = Anomaly Detection:

Necessarily: u(tA) =t~ Tu(A . o o -
Dependence Structure. y: H(tA) H(A) L or @ = "normal behaviour” in extreme regions
= angular measure on sphere Sq—_1: ®(B) = pu{tB,t =1} * — precision in extreme regions - better false alarm rate

The Standard Tail Dependence Function (STDF)
Why considering the STDF ? u(A) = lim tP(V € tA) Intuition behind the STDF
Two rare events X1 i X1 \ith small proba ™'
Problem: Hard to study deviation of empirical i (or @p) spectral measure [ e =7 P2

(existing work: d = 2)

Idea: Consider the restriction of 1 to a convenient VC-class: :H:

stable tail dependence function (STDF)

Suppose that we know p1 and p». Investigate:

sdf [ = 1 ‘
The STDF | is an analytic tool: VC-class

* knowledge of | = knowledge of 4 = structure of extremes 1(2) = u([0, 2= 1]°) STDE | verif es

* ‘trick’: allows to work on rectangles = lim P(V; > ta;" or Vo > tay ') P12 ~ l(p1,p2) (ifpy and po small enough)

t— o0

D12 :IP(X1 = X1 Or X2 ZXZ)

Estimation of the STDF

Main Issue

Solution

Related work and goal . . . .
Key: VC-inequality adapted to rare regions — bound in

Would like to use concentration inequality...

* Results on |: asymptotic normality, under smoothness n 1 1
assumption. Usually: igﬁ (P —Pn)(A) VP E\/E log S
* Goal: Derive non-asymptotic bounds with no assumption In our case:  sup d (P — Pn) (kA) ‘ with p the probability to be in the union class Uac 4 A.
other than existence (Leftrightarrow regular variation AcA K n
Assumption). k
N n

. e scaling ?: to compense the decreasing proba of XA.
Standard estimator of / | "

» classical VC-inequality: % nice but not used ! = bound in
high proba bound in 1 1
I, %) = Jim IP(V1 > i or Vo> tx2_1) —manp una | \/E l0g
N g X \/,17 Iog% — oo ! Interpretation of k:
V "V e Kk ~ to the ‘number of data considered as extreme’
= Needs to take into account that the proba of £A is small. e k ~ number of data used for estimation
(X1, Xo) = n @n(% > Tt or v, > Qx_1>
’ K — k1 — k2
with Final result
e K — 00, % — 0
e V= (1—F(X)) " and U = (1— B(X))
With proba. > 1 —9: e T:tobound ,/p (xX=T & p<Tk)
F(X;) = rank(X;)/n
T d+3 . . . . ‘ . o
sup |h(x) — Ix)] < Cd Flog — + bias(k,n, T) e bias: to avoid assumptions, ‘how far are we in the tail ?
0=x=XT
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