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Learning the Dependence Structure of Rare Events

e multivariate Extreme Value Theory (EVT) for ML

» Learning the unusual
» £ averaging effect / mean behavior
» — application to Anomaly Detection

o Statistical Learning for multivariate EVT

» VC-type bounds for estimating the Asymptotic
Dependence Structure.



@ Multivariate EVT & Extreme Dependence



Framework

e Context
» Random vector X = (Xi,..., Xy)

» Margins: X; ~ F; (Fj continuous)

e Preliminary step: Standardization of each marginal

» Standard Pareto: V; = — 1()(/_) (]P’(Vj >x)=1 x> 1)



Problematic
Joint extremes: V’s distribution above large thresholds?

P(V e A)? (A far from the origin’).
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Fundamental hypothesis and consequences
e Standard assumption: let A extreme region,
P[VetA ~t '"P[VeA (radial homogeneity)

e Formally,

regular variation (after standardization):

0¢A

PV et A - u(A), i : exponent measure
—00

Necessarily: (tA) =t 'u(A)

e = angular measure on sphere Sy_1: ®(B) = wW{iB,t > 1}



General model in multivariate EVT

Model for excesses

For an extreme region A:

PIVe Al = u(A)

& For a large r > 0 and a region B on the unit sphere:
\Y 1
P|V] >r EB] ~ —®(B)
MI>5 r

= @ (or p) rules the joint distribution of extremes (if
margins are known).



¢ rules the joint distribution of extremes

v, : 2

Vi TV

= Anomaly Detection:
e unor ¢ ="normal behavior” in extreme regions
e — precision in extreme regions - better false alarm rate



Why considering the STDF ?

Problem: Hard to study deviation of empirical {i, (or $n)
(existing work: d = 2)

Idea: Consider the restriction of u to a convenient VC-class:

stable tail dependence function (STDF)

X=(X{y...,Xq), X_1:(X1_1,...,Xd )

The STDF [ is an analytic tool:
e knowledge of I = knowledge of n = structure of extremes
e ‘trick’: allows to work on rectangles



Intuition behind the STDF

1=
XQZX

Two rare events { X1 2 X ith small proba { Z !
2 2

Suppose that we know p; and p». Investigate:

pr2 =P(X1 > x4 or Xo > xo)

STDF [ verifies:

piz =~ l(p1,p2) (if py and p> small enough)
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Alternative definition of STDF

spectral measure [,  <—> stdf [ = ,U,|

l l

VC-class

p(A) = lim ¢P(V € tA) I(z) = p([0,271]°)
= tli)m tP(Vy > txfl or Vp > tm;l)

- Equivalent definition of I:

(X1, Xp) = tingot IP’(V1 >t oor Vo> tx2_1>

- bias(t, T) = sup ‘l(x1,x2)—t P(Viz 06" or Vo> tx;)\

0<x1,%<T
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@ Estimation of the STDF



Related work and goal

e Results on /: asymptotic normality, under smoothness
assumption.

e Goal: Derive non-asymptotic bounds with no assumption
other than existence (& regular variation assumption).
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Standard non parametric estimator of /

0, 3e) = lim ¢ P(Vi= 06" or Vo> tg')

t— 7
V = V  yields the estimate of I:

n n
In(X1,X0) = ’ @n(% > EX1_1 or V> e )

with
e k— o0, § =00
e Vi=(1-FX) " and V= (1 - F(x)

Fi(X;) = rank(X;)/n



Main Issue

Would like to use concentration inequality...

k
Inour case:  sup . ’(P—Pn) (A)‘
Aca K n

But usually: iug |(P—Pn)(A)]
(S

» scaling 7

e classical VC-inequality: % nice but not used !
— high proba bound in

Q 1|o _ — I
K XA/ g oo

= Needs to take into account that the proba of %A is small.



Solution
Key: VC-inequality adapted to rare regions — bound in

n /d 1
VR ple9s

with p the probability to be in the union class Uac 4A.

k
< d—
den

1 1
dy/ K log 3
interpretation of k:

e k ~ to the ‘number of data considered as extreme’
e k ~ number of data used for estimation

= bound in
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Final result

With proba. > 1 — &:

sup |la(x) — Ix)] < Cd IIog$ + bias(g,

T)
0=<x=<T k

e T:itobound p (X=T & p<dTk)

e bias — 0 by existence of . No assumptions needed about
‘how far is k in the tail’.

bias(Z, T) = sup ‘l(x1,x2)

M
k 0<x1,%<T

—g IP’(V1 zgxﬁ or ng—x;)’



Idea for applications to Ano

Structure of @ in dimension 3 —
29 _ 1 faces on simplex

Hope: Sparse structure repre-
senting ‘normal behavior’

maly Detection
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Data are non-asymptotic

— tolerance parameter €

— VC-class close to the one
defining the STDF



Conclusion

e Learning theory adapted to multivariate EVT
e Tools for the study of low probability regions

e Paves the way to the use of multivariate EVT in machine
learning and anomaly detection (ongoing work)
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