Learning the Dependence Structure of Rare Events: a non-asymptotic study

Nicolas Goix, Anne Sabourin, Stéphan Clémencon Institut Mines-Télécom, Télécom ParisTech, CNRS-LTCI

COLT, July 2015, Paris

Learning the Dependence Structure of **Rare** Events

- multivariate Extreme Value Theory (EVT) for ML
 - Learning the unusual

 - ▶ → application to Anomaly Detection

- Statistical Learning for multivariate EVT
 - VC-type bounds for estimating the Asymptotic Dependence Structure.

1 Multivariate EVT & Extreme Dependence

2 Estimation of the STDF

Framework

Context

- Random vector $\mathbf{X} = (X_1, \dots, X_d)$
- ► Margins: $X_j \sim F_j$ (F_j continuous)
- Preliminary step: Standardization of each marginal
 - ► Standard Pareto: $V_j = \frac{1}{1 F_j(X_j)}$ $\left(\mathbb{P}(V_j \ge x) = \frac{1}{x}, x \ge 1 \right)$

Problematic

Joint extremes: V's distribution above large thresholds?

 $\mathbb{P}(\mathbf{V} \in A)$? (*A* 'far from the origin').

Fundamental hypothesis and consequences

• Standard assumption: let A extreme region,

$$\mathbb{P}[\mathbf{V} \in t \ A] \simeq t^{-1} \mathbb{P}[\mathbf{V} \in A]$$
 (radial homogeneity)

Formally,

regular variation (after standardization):

 $0 \notin \overline{A}$

$$t\mathbb{P}[\mathbf{V} \in t \ A] \xrightarrow[t \to \infty]{} \mu(A), \qquad \mu : \text{ exponent measure}$$

Necessarily:
$$\mu(tA) = t^{-1}\mu(A)$$

• \Rightarrow angular measure on sphere S_{d-1} : $\Phi(B) = \mu\{tB, t \ge 1\}$

General model in multivariate EVT

Model for excesses

For an extreme region A:

$$\mathbb{P}[\textbf{V} \in \textbf{A}] \ \simeq \ \mu(\textbf{A})$$

 \Leftrightarrow For a large r > 0 and a region B on the unit sphere:

$$\mathbb{P}\left[\|\mathbf{V}\| > r, \frac{\mathbf{V}}{\|\mathbf{V}\|} \in B\right] \simeq \frac{1}{r} \Phi(B)$$

 \Rightarrow Φ (or μ) rules the joint distribution of extremes (if margins are known).

◆ロト ◆個ト ◆量 > ◆量 > ・量 ・ 夕 Q ②

φ rules the joint distribution of extremes

⇒ Anomaly Detection:

- μ or ϕ = "normal behavior" in extreme regions
- ullet ightarrow precision in extreme regions better false alarm rate

Why considering the STDF?

Problem: Hard to study deviation of empirical $\hat{\mu}_n$ (or $\hat{\Phi}_n$)

(existing work: d = 2)

Idea: Consider the restriction of μ to a convenient VC-class:

stable tail dependence function (STDF)

$$\mathbf{x} = (x_1, \dots, x_d), \quad \mathbf{x}^{-1} = (x_1^{-1}, \dots, x_d^{-1})$$

$$l(\mathbf{x}) = \mu([0, \mathbf{x}^{-1}]^c)$$

The STDF *l* is an analytic tool:

- knowledge of $l \Rightarrow$ knowledge of $\mu \Rightarrow$ structure of extremes
- 'trick': allows to work on rectangles

Intuition behind the STDF

Two rare events
$$\left\{ \begin{array}{l} X_1 \geq x_1 \\ X_2 \geq x_2 \end{array} \right.$$
 with small proba $\left\{ \begin{array}{l} p_1 \\ p_2 \end{array} \right.$

Suppose that we know p_1 and p_2 . Investigate:

$$p_{12} = \mathbb{P}(X_1 \ge x_1 \text{ or } X_2 \ge x_2)$$

STDF *l* verifies:

 $p_{12} \simeq l(p_1, p_2)$ (if p_1 and p_2 small enough)

◆ロト ◆個ト ◆量 > ◆量 > ・量 ・ 夕 Q ②

Alternative definition of STDF

$$\mu(A) = \lim_{t \to \infty} t \mathbb{P}(V \in tA)$$

$$\text{stdf} \quad l = \mu \mid_{\text{VC-class}} \downarrow$$

$$l(x) = \mu([0, x^{-1}]^c)$$

$$= \lim_{t \to \infty} t \mathbb{P}(V_1 \geq tx_1^{-1} \text{ or } V_2 \geq tx_2^{-1})$$

- Equivalent definition of *l*:

$$l(x_1, x_2) = \lim_{t \to \infty} t \ \mathbb{P}\Big(V_1 \ge tx_1^{-1} \ \text{or} \ V_2 \ge tx_2^{-1}\Big)$$

- bias
$$(t,T) = \sup_{0 < x_1, x_2 < T} \left| l(x_1, x_2) - t \ \mathbb{P}\Big(V_1 \ge t x_1^{-1} \ \text{or} \ V_2 \ge t x_2^{-1} \Big) \right|$$

←□ > ←□ > ← □ > ← □ → ← □

Multivariate EVT & Extreme Dependence

2 Estimation of the STDF

Related work and goal

- Results on *l*: asymptotic normality, under smoothness assumption.
- Goal: Derive non-asymptotic bounds with no assumption other than existence (
 ⇔ regular variation assumption).

Standard non parametric estimator of *l*

$$l(x_1, x_2) = \lim_{t \to \infty} t \mathbb{P}\left(V_1 \ge tx_1^{-1} \text{ or } V_2 \ge tx_2^{-1}\right)$$

 $egin{array}{ll} t &
ightarrow rac{n}{k} \ V
ightarrow \hat{V} & ext{ yields the estimate of } l : \end{array}$

$$l_n(x_1, x_2) := \frac{n}{k} \, \hat{\mathbb{P}}_n \Big(\hat{V}_1 \ge \frac{n}{k} x_1^{-1} \, \text{ or } \, \hat{V}_2 \ge \frac{n}{k} x_2^{-1} \Big)$$

with

•
$$k \to \infty$$
, $\frac{n}{k} \to \infty$

•
$$V_j = (1 - F_j(X_j))^{-1}$$
 and $\hat{V}_j = (1 - \hat{F}_j(X_j))^{-1}$

$$\hat{F}_i(X_i) = rank(X_i)/n$$

Main Issue

Would like to use concentration inequality...

In our case:
$$\sup_{A \in \mathcal{A}} \frac{n}{k} \left| (\mathcal{P} - \mathcal{P}_n) \left(\frac{k}{n} A \right) \right|$$
But usually:
$$\sup_{A \in \mathcal{A}} \left| (\mathcal{P} - \mathcal{P}_n) (A) \right|$$

- scaling $\frac{n}{k}$
- classical VC-inequality: $\frac{k}{n}$ nice but not used ! \rightarrow high proba bound in

$$\frac{n}{k} \times \sqrt{\frac{1}{n} \log \frac{1}{\delta}} \longrightarrow \infty !!$$

 \Rightarrow Needs to take into account that the proba of $\frac{k}{n}A$ is small.

Solution

Key: VC-inequality adapted to rare regions \rightarrow bound in

$$\sqrt{\mathbf{p}} \frac{n}{k} \sqrt{\frac{d}{n} \log \frac{1}{\delta}}$$

with p the probability to be in the union class $\cup_{A \in \mathcal{A}} A$.

$$\mathbf{p} \lesssim d\frac{k}{n}$$

 \Rightarrow bound in

$$d\sqrt{\frac{1}{k}\log\frac{1}{\delta}}$$

interpretation of k:

- $k \simeq$ to the 'number of data considered as extreme'
- k ≃ number of data used for estimation

Final result

Theorem

With proba. $\geq 1 - \delta$:

$$\sup_{0 \preceq x \preceq T} \ \left| l_n(x) \ - \ l(x) \right| \ \leq \ Cd\sqrt{\frac{T}{k} \log \frac{d+3}{\delta}} \ + \ \text{bias}(\frac{n}{k},T)$$

- T: to bound $\sqrt{\mathbf{p}}$ $(x \leq T \Leftrightarrow \mathbf{p} \leq dT \frac{k}{n})$
- bias → 0 by existence of *l*. No assumptions needed about 'how far is *k* in the tail'.

bias
$$(\frac{n}{k}, T) = \sup_{0 \le x_1, x_2 \le T} \left| l(x_1, x_2) - \frac{n}{k} \mathbb{P} \left(V_1 \ge \frac{n}{k} x_1^{-1} \text{ or } V_2 \ge \frac{n}{k} x_2^{-1} \right) \right|$$

Idea for applications to Anomaly Detection

Structure of Φ in dimension 3 \rightarrow

 $2^d - 1$ faces on simplex

Hope: Sparse structure representing 'normal behavior'

Data are non-asymptotic

- ightarrow tolerance parameter ϵ
- \rightarrow VC-class close to the one defining the STDF

Conclusion

- Learning theory adapted to multivariate EVT
- Tools for the study of low probability regions
- Paves the way to the use of multivariate EVT in machine learning and anomaly detection (ongoing work)

◆ロ → ◆個 → ◆量 → ◆量 → ● の へ ○

Some references:

- J. H. J. Einmahl, Andrea Krajina, J. Segers. An M-estimator for tail dependence in arbitrary dimensions, 2012.
- P. Embrechts, L. de Haan, X. Huang. Modelling multivariate extremes, 2000.
- L. de Haan, A. Ferreira. Extreme value theory, 2006
- V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization (with discussion), 2006.
- Colin McDiarmid. Concentration, 1998
- Y. Qi. Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics, 1997
- S. Resnick. Extreme Values, Regular Variation, Point Processes, 1987
- V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition, 1974.

