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Introduction

The central dogma of molecular biology

replication
(DNA -> DNA)
DNA Polymerase

DDA ONA

transcription
(DNA -> RNA)
RNA Polymerase

LHAH

translation
(RNA -> Protein)
Ribosome

O-0-0-0-0-0-0 Prrotein
(thanks Wikipedia!)

Information transfer to transform a
gene into a protein:

@ Transcription: DNA is copied
into messenger RNA (mRNA)
that contains the same genetic
information.

@ Translation: mRNA leaves the
nucleus and is transformed
into a protein by the
ribosomes.
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Zoom on transcription

@ In order for transcription to occur, one needs transcription factors.

@ They are either promoting or inhibiting transcription of other

genes.

Legend: A transeription factor molecule binds to the DNA at its binding sitc, and thereby
regulates the production of a protein from a gene.

REGULATE

TRANSCRIPTION
FACTOR GENE
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BINDING SITE

(Borrowed from http://howardhughes.trinity.duke.edu/)
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Introduction

Gene Regulatory Networks

@ Gene Regulatory Network (GRN):

» Complex set of interactions between genes
» Transcriptions factors (TF) activate or repress target genes (TG).

» Note that {TFs} € {TGs}.

@ Example
» G4 regulates G2, G3 and G86. \
» @7 is regulated both by G3 and G1.

@ Why reconstruct it? ’
» Understand the structure of
regulation better (causality,
patterns,...) .
» Applications such as drug target
identification.
[
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Introduction

Gene expression data and microarrays

@ The more activated a gene , the more quantity of mRNA in the
nucleus, the more expressed the gene.

@ Therefore measuring gene expression amounts to measuring the
quantity of mRNA.

@ Microarrays are chips on which RNAs are hybridized. The more
RNA in the cell, the more on the chip.

@ They are scanned and transformed into an image. Levels of grey
represent gene expression.
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Reconstruction of a GRN using gene expression data

TRANSCRIPTION ‘ .
FACTORS ‘

+ @
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Regression-based inference

For 10+ years, many methods have been proposed using, e.g.:
@ Static and dynamic bayesian networks,
@ Boolean networks,
@ Correlation-based methods,
@ Information-theoretic based methods,
° ..
@ | Regression-based methods.

» It is assumed that the expression level of a TG is a function of the
expression levels of the TFs that regulate it.
» We will focus here on linear regression.




Outline

e TIGRESS: Trustful Inference of Gene REgulation using Stability
Selection
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Regression-based inference: main steps

Idea: consider as many problems as TGs (n;y subproblems)
subproblem g < find regulators TFs(g) of gene g
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Regression-based inference: main steps

Idea: consider as many problems as TGs (n;y subproblems)
subproblem g < find regulators TFs(g) of gene g

@ For each TG, score all nys candidate interactions:

TG 1

TG2 TG3

TG ntg

TFA1
TF 2

TF Nyf
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A sparse problem requires a sparsity-inducing method

@ Safe to assume: few TFs regulate each TG in general. The
solution is sparse (few edges in general):

Xg=XrB9+e= > XfBf+e
te TFs(g)

@ Lasso is one of the most common sparsity-inducing algorithms:

(39 =arg min || Xg — XT 9115 + 159 1.
BERM  ~~ ~—~
TGg Candidate TFs (all but g)

Then, 37 # 0 < tregulates g.

@ Alternatively to choosing a value for A, one can control the sparsity
of 39 by a number of LARS steps. Roughly, after L steps in the
algorithm, L TFs are chosen, which makes it easier to compare
the subproblems.
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Stability Selection

@ Problem: Lasso efficiency is limited:
» when TFs are correlated, i.e. different training sets will lead to
different solutions.
» it does not provide a confidence score for each TF (no probability
that the edge exist)
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Stability Selection

@ Problem: Lasso efficiency is limited:
» when TFs are correlated, i.e. different training sets will lead to
different solutions.
» it does not provide a confidence score for each TF (no probability
that the edge exist)
@ Solution: Meinshausen and Biihimann, 2009 introduced Stability
Selection with randomized Lasso:
» Resample the experiments: run Lasso many (e.g. 1,000) times
with different training sets.
» “Resample” the variables: in each run, also weight the variables
differently (randomized Lasso)

Xit — Wi Xit (1)

where W, ~ U([a, 1]) for all t = 1...ny. The smaller «, the more
randomized the variables; o = 1: no randomization.
» Get a frequency of selection for each TF.
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Stability Selection path

For each TG, Stability Selection returns such a frequency path:

o
©
T

e
3
T

=3
o
T

Frequency of selection of each TF
over the subsamplings
g
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0.3
0.2
T e
—  ——
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8 10 — 12
Number L of LARS steps

(example for one target gene)
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TIGRESS

Scoring

How to transform this matrix into a vector of scores?
@ Oiriginal scoring (from original paper)
@ Area scoring (contribution)

o
o
T

Frequency of selection of each TF
over the subsamplings
o o
T
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TIGRESS

Scoring
How to transform this matrix into a vector of scores?
@ Oiriginal scoring (from original paper)
@ Area scoring (contribution)

Frequency of selection of each TF

1

over the subsamplings
o
&

sgrsely, ) = e

2 4 6 8 10 12 14 16 18 20
Number L of LARS steps
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How to choose the right L?

Simple heuristic:
@ Let N be the total number of edges one wants to predict.
@ For each value of L, put all scores together into a vector S; (of
size Ny X Nyg).
@ Then,

~

L* =arg L:qnirL] |i{s € S.,s#0} — N|

@ [* is the value for which TIGRESS predicts the number of
interactions closest to N.

@ What is N? Assume that each TG is regulated by 3 TFs in
average. Then fix N = 3nyy/prec where prec is the expected
precision for a recall of 1. N is the necessary number of
predictions for all true edges to be retrieved.
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Get the final network

Finally,
@ Rank all edges by decreasing score s;«.
@ Threshold to N edges.
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TIGRESS summary

@ For each TG, score all nys candidate interactions:

TG1 TG2 TG3 .. TGnyg
TF1 | - 023 0 .. 0.1
TF2 [ 097 - 003 .. 0
TFny| 0 0 0 .. 076

@ Rank the scores altogether:

TF12 — TG17 1
TF23 — TG5 0.99
TF2 — TG1 0.97

© Threshold to a value or a given number N of edges.
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TIGRESS summary

@ For each TG, score all ny candidate interactions:
@ Run Stability Selection many times, get frequencies.
@ Score for each value of L.
© Choose L*.
O Keep s;. scores:

TG1 TG2 TG3 .. TG ng
TF 1 - 023 0 .. o011
TF2 | 097 - 003 .. O
TFng | 0 0 0 .. 076

©@ Rank the scores altogether:
TF12 — TG17 A1
TF23 — TG5 0.99
TF2 — TG1 0.97

© Threshold to a value or a given number N of edges.
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TIGRESS

Evaluation

@ AUROC: Area Under the ROC curve
@ AUPR: Area Under the Precision/Recall curve

@ p-values paupr and pauroc: probability that a given or higher
AUPR (resp. AUROC) could be achieved by chance. The smaller
the better.

ROC curve Precision/Recall curve

06 06

P
o
&
Precision
a

04 0.4
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Data

@ DREAM 5 Challenge 4 in silico dataset: 805 experiments, 1643
genes, 195 TFs

@ E. Colinetwork from Faith et al, 2007: 907 experiments, 4297
genes, 3812 verified interactions among 1525 of the genes
present in the microarrays experiments.
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In silico network results
Level of randomization

AUPR AUROC
0‘32_/\—’
03
0.28
0281702 03 04 05 06 07 08 09 1 %81 02 03 04 05 06 07 08 09 1
a Il Original a
=109,5(PaypR) Wl Area =109, (Pauroc)
150 60
100 40
50 200
0
0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
[o) o

@ Area less sensitive than original to level of randomization.
@ Area systematically outperforms original.
@ Best values for a: between 0.1 and 0.5.
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In slco network resutts
Number of LARS steps

Overall score

| | | |
0 z 7 s 0 0 12 14 16 18 20
Number L of LARS steps

@ The larger «, the most critical the value of L.
@ Arealess sensitive than original to value of L.
@ Area systematically outperforms original.

@ Our estimates of L* are close to the truth.
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TIGRESS vs ...

Precision
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TIGRESS vs ...

’ Algorithm ‘ AUPR ‘ PAUPR ‘ AUROC ‘ PAUROC ‘
TIGRESS | 0.3152 | 8.01e-139 | 0.7829 | 5.43e-60
GENIE3 0.2915 | 2.91e-105 | 0.8155 | 2.30e-107
CLR 0.2654 | 1.82e-73 | 0.7817 | 1.41e-58
Pearson 0.1887 | 3.71e-13 | 0.7568 | 1.44e-32
ARACNE | 0.2758 | 1.73e-85 | 0.6715 | 9.82e-01

Lasso 0.2079 | 1.38e-23 | 0.7280 | 1.06e-12

Table: AUPR, AUROC and p-values obtained by several methods on the in
silico dataset.
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E. coli network resuits
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E. coli network resuits
Results on E. coli network

1 1
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@ TIGRESS is competitive with the best GRN inference networks on
in vivo data.
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E: collnetwork results
False discovery analysis

Very high proportion of false positives even in the top edges:

Number of false positives

° il n Lol n ol n ol
10 AR
10 10° 10° 10

Number of predicted edges
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How far the Fps from the truth?
Length of the shortest path in the true network between nodes in
spuriously discovered edges:

% of edges with given shortest path length in the true network

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ordered spuriously detected edges
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Patterns

Results

E. coli network results

] Distance \ Name

|

Illustration

|

Description

1

Parent/ Child

H—

G1 is a parent of G2.

Siblings

Couple

Grandparent/
Grandchild

a

d ©
s

@O-0O~®

G1 and G2 hav a common
parent. They are siblings.

G1 and G2 have a com-
mon child. They are a cou-

ple.

G1 has a child that is a

parent of G2.
grandparent of G2.

G1 is a
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Who are distance 2 FPs?
Type of patterns for distance 2 FPs:

e
3

=3
o

o
IS

[l siblings only

[l Grandparent/grandchild only
Couple only
Siblings and granparent/grandchild
Siblings and couple

-Couple and grandparent/grandchild|

A at once

Distribution of the relationship type
o o
o o

o
)

1600

200 400 600 800 1000 1200 1400
Ordered spuriously detected edges with shortest path of length 2 in the true network
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Results E. coli network results

The special case of siblings

We look for parent/child relationships. Instead, we find many siblings:

Discovered edge

| 4
; P
A 4]
% 3
Q )
o) Q
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Results E. coli network results

The special case of siblings
We look for parent/child relationships. Instead, we find many siblings:
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@ Conclusions and discussion
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Conclusion

@ TIGRESS provides:
» Automatization and adaptation of the Stability Selection procedure
to the GRN inference problem.
» Area scoring setting: better results and less elasticity to
parameters.
» Nice results (3rd best performer at DREAMS5, confirmed second
best on both in silico and E. coli networks.
» Code, demos and data available (MATLAB). Fast (SPAMS toolbox,
Mairal et al., 2009) and parallelizable.
@ However: outperformed by GENIES3
» TIGRESS uses essentially the same global framework as
GENIES...
» ... but GENIES is not linear (random forests).
» Overall: confirmation that regression-based methods belong to the
state-of-the-art.
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Discussion

@ How to choose the right model?

» The linear model is clearly not correct (but not that bad: FPs are not
far apart in the true graph)

» It has high bias and low variance.

» ltis also easily interpretable.

» Best method (GENIES) does not achieve great scores in general:
there is something more to the problem than a wrong model choice.

@ Could further information be used?

» We assumed in this work that expression data contains all the
necessary information. Probably not true.

» Some groups of genes are regulated by the same TFs (e.g.
operons): prior information?

» The experiments are not i.i.d (replicates, different situations...).

» Adding priors on motifs (e.g. feed-forward loops) is an option for
future work.
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Conclusions and discussion
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Conclusions and discussion

Thank you for your attention!
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