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Introduction

The central dogma of molecular biology

(thanks Wikipedia!)

Information transfer to transform a
gene into a protein:

1 Transcription: DNA is copied
into messenger RNA (mRNA)
that contains the same genetic
information.

2 Translation: mRNA leaves the
nucleus and is transformed
into a protein by the
ribosomes.
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Introduction

Zoom on transcription
In order for transcription to occur, one needs transcription factors.
They are either promoting or inhibiting transcription of other
genes.

(Borrowed from http://howardhughes.trinity.duke.edu/)
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Introduction

Gene Regulatory Networks

Gene Regulatory Network (GRN):
I Complex set of interactions between genes
I Transcriptions factors (TF) activate or repress target genes (TG).
I Note that {TFs} ∈ {TGs}.

Example
I G4 regulates G2, G3 and G6.
I G7 is regulated both by G3 and G1.

Why reconstruct it?
I Understand the structure of

regulation better (causality,
patterns,...)

I Applications such as drug target
identification.
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Introduction

Gene expression data and microarrays
The more activated a gene , the more quantity of mRNA in the
nucleus, the more expressed the gene.
Therefore measuring gene expression amounts to measuring the
quantity of mRNA.
Microarrays are chips on which RNAs are hybridized. The more
RNA in the cell, the more on the chip.
They are scanned and transformed into an image. Levels of grey
represent gene expression.
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Introduction

Reconstruction of a GRN using gene expression data
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Introduction

Regression-based inference

For 10+ years, many methods have been proposed using, e.g.:
Static and dynamic bayesian networks,
Boolean networks,
Correlation-based methods,
Information-theoretic based methods,
...
Regression-based methods.

I It is assumed that the expression level of a TG is a function of the
expression levels of the TFs that regulate it.

I We will focus here on linear regression.
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TIGRESS

Regression-based inference: main steps

Idea: consider as many problems as TGs (ntg subproblems)
subproblem g ⇔ find regulators TFs(g) of gene g

1 For each TG, score all ntf candidate interactions:
TG 1 TG 2 TG 3 ... TG ntg

TF 1
TF 2
...
TF ntf

2 Rank the scores altogether:
TF 12 → TG 17 1
TF 23 → TG 5 0.99
TF 2 → TG 1 0.97

... ... ... ...
3 Threshold to a value or a given number N of edges.
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TIGRESS

A sparse problem requires a sparsity-inducing method
Safe to assume: few TFs regulate each TG in general. The
solution is sparse (few edges in general):

Xg = XTβ
g + ε =

∑
t∈TFs(g)

Xtβ
g
t + ε

Lasso is one of the most common sparsity-inducing algorithms:

β̂g = arg min
β∈Rntf

|| Xg︸︷︷︸
TG g

− XT︸︷︷︸
Candidate TFs (all but g)

βg ||22 + λ||βg ||1.

Then, β̂g
t 6= 0⇔ t regulates g.

Alternatively to choosing a value for λ, one can control the sparsity
of βg by a number of LARS steps. Roughly, after L steps in the
algorithm, L TFs are chosen, which makes it easier to compare
the subproblems.
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TIGRESS

Stability Selection

Problem: Lasso efficiency is limited:
I when TFs are correlated, i.e. different training sets will lead to

different solutions.
I it does not provide a confidence score for each TF (no probability

that the edge exist)
Solution: Meinshausen and Bühlmann, 2009 introduced Stability
Selection with randomized Lasso:

I Resample the experiments: run Lasso many (e.g. 1,000) times
with different training sets.

I “Resample” the variables: in each run, also weight the variables
differently (randomized Lasso)

Xit ←WtXit (1)

where Wj ; U([α,1]) for all t = 1...ntf . The smaller α, the more
randomized the variables; α = 1: no randomization.

I Get a frequency of selection for each TF.
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TIGRESS

Stability Selection path

For each TG, Stability Selection returns such a frequency path:
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TIGRESS

Scoring
How to transform this matrix into a vector of scores?

Original scoring (from original paper)
Area scoring (contribution)
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TIGRESS

Scoring
How to transform this matrix into a vector of scores?

Original scoring (from original paper)
Area scoring (contribution)
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TIGRESS

How to choose the right L?

Simple heuristic:
Let N be the total number of edges one wants to predict.
For each value of L, put all scores together into a vector SL (of
size ntf × ntg).
Then,

L̂∗ = arg min
L=1...Lmax

|]{s ∈ SL, s 6= 0} − N|

L̂∗ is the value for which TIGRESS predicts the number of
interactions closest to N.
What is N? Assume that each TG is regulated by 3 TFs in
average. Then fix N = 3ntg/prec where prec is the expected
precision for a recall of 1. N is the necessary number of
predictions for all true edges to be retrieved.
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TIGRESS

Get the final network

Finally,
Rank all edges by decreasing score sL∗ .
Threshold to N edges.
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TIGRESS

TIGRESS summary

1 For each TG, score all ntf candidate interactions:
TG 1 TG 2 TG 3 ... TG ntg

TF 1 - 0.23 0 ... 0.11
TF 2 0.97 - 0.03 ... 0
... ... ... ... ... ...
TF ntf 0 0 0 ... 0.76

2 Rank the scores altogether:
TF 12 → TG 17 1
TF 23 → TG 5 0.99
TF 2 → TG 1 0.97

... ... ... ...
3 Threshold to a value or a given number N of edges.
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TIGRESS

TIGRESS summary
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TIGRESS

Evaluation
AUROC: Area Under the ROC curve
AUPR: Area Under the Precision/Recall curve
p-values pAUPR and pAUROC : probability that a given or higher
AUPR (resp. AUROC) could be achieved by chance. The smaller
the better.
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TIGRESS

Data

DREAM 5 Challenge 4 in silico dataset: 805 experiments, 1643
genes, 195 TFs
E. Coli network from Faith et al, 2007: 907 experiments, 4297
genes, 3812 verified interactions among 1525 of the genes
present in the microarrays experiments.

20 / 38



Results

Outline

1 Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability
Selection

3 Results
In silico network results
E. coli network results

4 Conclusions and discussion

21 / 38



Results In silico network results
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Results In silico network results

Level of randomization
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Area systematically outperforms original.
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Results In silico network results

Number of LARS steps
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The larger α, the most critical the value of L.
Area less sensitive than original to value of L.
Area systematically outperforms original.
Our estimates of L∗ are close to the truth.
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Results In silico network results

TIGRESS vs ...
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Results In silico network results

TIGRESS vs ...

Algorithm AUPR pAUPR AUROC pAUROC

TIGRESS 0.3152 8.01e-139 0.7829 5.43e-60
GENIE3 0.2915 2.91e-105 0.8155 2.30e-107
CLR 0.2654 1.82e-73 0.7817 1.41e-58
Pearson 0.1887 3.71e-13 0.7568 1.44e-32
ARACNE 0.2758 1.73e-85 0.6715 9.82e-01
Lasso 0.2079 1.38e-23 0.7280 1.06e-12

Table: AUPR, AUROC and p-values obtained by several methods on the in
silico dataset.
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Results E. coli network results

Outline

1 Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability
Selection

3 Results
In silico network results
E. coli network results

4 Conclusions and discussion

27 / 38



Results E. coli network results

Results on E. coli network

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

Genie
TIGRESS−original
TIGRESS−area
CLR
Pearson
ARACNE

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPR

T
P

R

TIGRESS is competitive with the best GRN inference networks on
in vivo data.
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Results E. coli network results

False discovery analysis

Very high proportion of false positives even in the top edges:
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Results E. coli network results

How far the Fps from the truth?
Length of the shortest path in the true network between nodes in
spuriously discovered edges:
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Results E. coli network results

Patterns
Distance Name Illustration Description

1 Parent/ Child G1 is a parent of G2.

2
Siblings G1 and G2 hav a common

parent. They are siblings.

Couple G1 and G2 have a com-
mon child. They are a cou-
ple.

Grandparent/
Grandchild

G1 has a child that is a
parent of G2. G1 is a
grandparent of G2.
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Results E. coli network results

Who are distance 2 FPs?
Type of patterns for distance 2 FPs:
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Results E. coli network results

The special case of siblings
We look for parent/child relationships. Instead, we find many siblings:
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Results E. coli network results

The special case of siblings
We look for parent/child relationships. Instead, we find many siblings:
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Conclusions and discussion

Conclusion

TIGRESS provides:
I Automatization and adaptation of the Stability Selection procedure

to the GRN inference problem.
I Area scoring setting: better results and less elasticity to

parameters.
I Nice results (3rd best performer at DREAM5, confirmed second

best on both in silico and E. coli networks.
I Code, demos and data available (MATLAB). Fast (SPAMS toolbox,

Mairal et al., 2009) and parallelizable.
However: outperformed by GENIE3

I TIGRESS uses essentially the same global framework as
GENIE3...

I ... but GENIE3 is not linear (random forests).
I Overall: confirmation that regression-based methods belong to the

state-of-the-art.
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Conclusions and discussion

Discussion

1 How to choose the right model?
I The linear model is clearly not correct (but not that bad: FPs are not

far apart in the true graph)
I It has high bias and low variance.
I It is also easily interpretable.
I Best method (GENIE3) does not achieve great scores in general:

there is something more to the problem than a wrong model choice.
2 Could further information be used?

I We assumed in this work that expression data contains all the
necessary information. Probably not true.

I Some groups of genes are regulated by the same TFs (e.g.
operons): prior information?

I The experiments are not i.i.d (replicates, different situations...).
I Adding priors on motifs (e.g. feed-forward loops) is an option for

future work.
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Conclusions and discussion

Acknowledgments

Fantine Mordelet Paola Vera-Licona Jean-Philippe Vert

37 / 38



Conclusions and discussion

Thank you for your attention!
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