TIGRESS: Trustful Inference of Gene Regulation using Stability Selection

Anne-Claire Haury, Fantine Mordelet, Paola Vera-Licona and Jean-Philippe Vert

Centre for Computational Biology Mines ParisTech, INSERM U900, Institut Curie

TEST - Telecom ParisTech, January 13th, 2012

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

- In silico network results
- E. coli network results

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

- In silico network results
- E. coli network results
- 4 Conclusions and discussion

The central dogma of molecular biology

Information transfer to transform a gene into a protein:

- Transcription: DNA is copied into messenger RNA (mRNA) that contains the same genetic information.
- Translation: mRNA leaves the nucleus and is transformed into a protein by the ribosomes.

Zoom on transcription

- In order for transcription to occur, one needs transcription factors.
- They are either promoting or inhibiting transcription of other genes.

Legend: A transcription factor molecule binds to the DNA at its binding site, and thereby regulates the production of a protein from a gene.

(Borrowed from http://howardhughes.trinity.duke.edu/)

Gene Regulatory Networks

- Gene Regulatory Network (GRN):
 - Complex set of interactions between genes
 - Transcriptions factors (TF) activate or repress target genes (TG).
 - ► Note that {*TFs*} ∈ {*TGs*}.

• Example

- ► G4 regulates G2, G3 and G6.
- ► G7 is regulated both by G3 and G1.
- Why reconstruct it?
 - Understand the structure of regulation better (causality, patterns,...)
 - Applications such as drug target identification.

Gene expression data and microarrays

- The more activated a gene , the more quantity of mRNA in the nucleus, the more expressed the gene.
- Therefore measuring gene expression amounts to measuring the quantity of mRNA.
- Microarrays are chips on which RNAs are hybridized. The more RNA in the cell, the more on the chip.
- They are scanned and transformed into an image. Levels of grey represent gene expression.

Reconstruction of a GRN using gene expression data

Regression-based inference

For 10+ years, many methods have been proposed using, e.g.:

- Static and dynamic bayesian networks,
- Boolean networks,
- Correlation-based methods,
- Information-theoretic based methods,
- ...

• Regression-based methods.

- It is assumed that the expression level of a TG is a function of the expression levels of the TFs that regulate it.
- We will focus here on linear regression.

Outline

Introduction

<ロ> (四) (四) (日) (日) (日)

3 Results

- In silico network results
- E. coli network results
- 4 Conclusions and discussion

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

For each TG, score all *n*_{tf} candidate interactions:

ank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\longrightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1				
TF 2				
TF n _{tf}				

ank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\longrightarrow	TG 5	0.99
TF 2	\longrightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-			
TF 2	0.97			
TF n _{tf}	0			

2 Rank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\longrightarrow	TG 5	0.99
TF 2	\longrightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23		
TF 2	0.97	-		
TF n _{tf}	0	0		

ank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	
TF 2	0.97	-	0.03	
TF n _{tf}	0	0	0	

2 Rank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF <i>n_{tf}</i>	0	0	0	 0.76

2 Rank the scores altogether:

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\longrightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Idea: consider as many problems as TGs (n_{tg} subproblems) subproblem $g \Leftrightarrow$ find regulators TFs(g) of gene g

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

TIGRESS

A sparse problem requires a sparsity-inducing method

• Safe to assume: few TFs regulate each TG in general. The solution is sparse (few edges in general):

$$X_{g} = X_{T}\beta^{g} + \epsilon = \sum_{t \in TFs(g)} X_{t}\beta^{g}_{t} + \epsilon$$

• Lasso is one of the most common sparsity-inducing algorithms:

$$\hat{\beta}^{g} = \arg\min_{\beta \in \mathbb{R}^{n_{tf}}} ||\underbrace{X_{g}}_{\mathsf{TG}\ g} - \underbrace{X_{\mathcal{T}}}_{\mathsf{Candidate\ TFs\ (all\ but\ g)}} \beta^{g}||_{2}^{2} + \lambda ||\beta^{g}||_{1}.$$

Then, $\hat{\beta}_t^g \neq 0 \Leftrightarrow t$ regulates g.

 Alternatively to choosing a value for λ, one can control the sparsity of β^g by a number of LARS steps. Roughly, after *L* steps in the algorithm, *L* TFs are chosen, which makes it easier to compare the subproblems.

Stability Selection

- Problem: Lasso efficiency is limited:
 - when TFs are correlated, i.e. different training sets will lead to different solutions.
 - it does not provide a confidence score for each TF (no probability that the edge exist)
- Solution: *Meinshausen and Bühlmann, 2009* introduced Stability Selection with randomized Lasso:
 - Resample the experiments: run Lasso many (e.g. 1,000) times with different training sets.
 - "Resample" the variables: in each run, also weight the variables differently (randomized Lasso)

$$X_{it} \leftarrow W_t X_{it} \tag{1}$$

where $W_j \sim \mathcal{U}([\alpha, 1])$ for all $t = 1...n_{tf}$. The smaller α , the more randomized the variables; $\alpha = 1$: no randomization.

Get a frequency of selection for each TF.

Stability Selection

- Problem: Lasso efficiency is limited:
 - when TFs are correlated, i.e. different training sets will lead to different solutions.
 - it does not provide a confidence score for each TF (no probability that the edge exist)
- Solution: *Meinshausen and Bühlmann, 2009* introduced Stability Selection with randomized Lasso:
 - Resample the experiments: run Lasso many (e.g. 1,000) times with different training sets.
 - "Resample" the variables: in each run, also weight the variables differently (randomized Lasso)

$$X_{it} \leftarrow W_t X_{it} \tag{1}$$

where $W_j \rightsquigarrow U([\alpha, 1])$ for all $t = 1...n_{tf}$. The smaller α , the more randomized the variables; $\alpha = 1$: no randomization.

Get a frequency of selection for each TF.

Stability Selection path

For each TG, Stability Selection returns such a frequency path:

(example for one target gene)

Scoring

How to transform this matrix into a vector of scores?

- Original scoring (from original paper)
- Area scoring (contribution)

Scoring

How to transform this matrix into a vector of scores?

- Original scoring (from original paper)
- Area scoring (contribution)

How to choose the right L?

Simple heuristic:

- Let *N* be the total number of edges one wants to predict.
- For each value of L, put all scores together into a vector S_L (of size n_{tf} × n_{tg}).

Then,

$$\hat{L}^* = rg\min_{L=1...L_{\sf max}} |\sharp\{m{s}\in m{S}_L,m{s}
eq 0\} - m{N}|$$

- \hat{L}^* is the value for which TIGRESS predicts the number of interactions closest to *N*.
- What is *N*? Assume that each TG is regulated by 3 TFs in average. Then fix $N = 3n_{tg}/prec$ where *prec* is the expected precision for a recall of 1. *N* is the necessary number of predictions for all true edges to be retrieved.

Get the final network

Finally,

- Rank all edges by decreasing score *s*_{*L**}.
- Threshold to *N* edges.

TIGRESS summary

• For each TG, score all n_{tf} candidate interactions:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
			•••	
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

TIGRESS summary

- For each TG, score all n_{tf} candidate interactions:
 - Run Stability Selection many times, get frequencies.
 - Score for each value of L.
 - Ohoose L*.
 - Keep s_{L^{*}} scores:

	TG 1	TG 2	TG 3	 TG n _{tg}
TF 1	-	0.23	0	 0.11
TF 2	0.97	-	0.03	 0
TF n _{tf}	0	0	0	 0.76

2 Rank the scores altogether:

TF 12	\rightarrow	TG 17	1
TF 23	\rightarrow	TG 5	0.99
TF 2	\rightarrow	TG 1	0.97

Evaluation

- AUROC: Area Under the ROC curve
- AUPR: Area Under the Precision/Recall curve
- p-values *p_{AUPR}* and *p_{AUROC}*: probability that a given or higher AUPR (resp. AUROC) could be achieved by chance. The smaller the better.

Data

- DREAM 5 Challenge 4 in silico dataset: 805 experiments, 1643 genes, 195 TFs
- *E. Coli* network from *Faith et al, 2007*: 907 experiments, 4297 genes, 3812 verified interactions among 1525 of the genes present in the microarrays experiments.

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

- In silico network results
- E. coli network results
- 4 Conclusions and discussion

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

In silico network results

E. coli network results

4 Conclusions and discussion

Level of randomization

- Area less sensitive than original to level of randomization.
- Area systematically outperforms original.
- Best values for α : between 0.1 and 0.5.

・ロット (雪) (コ) (コ)

In silico network results

Results

- The larger α , the most critical the value of *L*.
- Area less sensitive than original to value of L.
- Area systematically outperforms original.
- Our estimates of *L*^{*} are close to the truth.

 $\exists \rightarrow$

TIGRESS vs ...

・ロト・西ト・ヨト・ヨー つへぐ

25/38

TIGRESS vs ...

Algorithm	AUPR	<i>P_{AUPR}</i>	AUROC	<i>p_{AUROC}</i>
TIGRESS	0.3152	8.01e-139	0.7829	5.43e-60
GENIE3	0.2915	2.91e-105	0.8155	2.30e-107
CLR	0.2654	1.82e-73	0.7817	1.41e-58
Pearson	0.1887	3.71e-13	0.7568	1.44e-32
ARACNE	0.2758	1.73e-85	0.6715	9.82e-01
Lasso	0.2079	1.38e-23	0.7280	1.06e-12

Table: AUPR, AUROC and p-values obtained by several methods on the *in silico* dataset.

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

- In silico network results
- E. coli network results
- 4 Conclusions and discussion

Results on E. coli network

• TIGRESS is competitive with the best GRN inference networks on *in vivo* data.

False discovery analysis

Very high proportion of false positives even in the top edges:

How far the Fps from the truth?

Length of the shortest path in the true network between nodes in spuriously discovered edges:

<ロ > < 団 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 30/38)

Patterns

Distance	Name	Illustration	Description
1	Parent/ Child	G1 G2	G1 is a parent of G2.
2	Siblings		G1 and G2 hav a common parent. They are siblings.
	Couple	G1 G2	G1 and G2 have a com- mon child. They are a cou- ple.
	Grandparent/ Grandchild		G1 has a child that is a parent of G2. G1 is a grandparent of G2.

Who are distance 2 FPs?

Type of patterns for distance 2 FPs:

The special case of siblings

We look for parent/child relationships. Instead, we find many siblings:

The special case of siblings

We look for parent/child relationships. Instead, we find many siblings:

Outline

Introduction

2 TIGRESS: Trustful Inference of Gene REgulation using Stability Selection

3 Results

- In silico network results
- E. coli network results

4 Conclusions and discussion

Conclusion

• TIGRESS provides:

- Automatization and adaptation of the Stability Selection procedure to the GRN inference problem.
- Area scoring setting: better results and less elasticity to parameters.
- Nice results (3rd best performer at DREAM5, confirmed second best on both *in silico* and *E. coli* networks.
- Code, demos and data available (MATLAB). Fast (SPAMS toolbox, Mairal et al., 2009) and parallelizable.

However: outperformed by GENIE3

- TIGRESS uses essentially the same global framework as GENIE3...
- ... but GENIE3 is not linear (random forests).
- Overall: confirmation that regression-based methods belong to the state-of-the-art.

Discussion

How to choose the right model?

- The linear model is clearly not correct (but not that bad: FPs are not far apart in the true graph)
- It has high bias and low variance.
- It is also easily interpretable.
- Best method (GENIE3) does not achieve great scores in general: there is something more to the problem than a wrong model choice.

Could further information be used?

- We assumed in this work that expression data contains all the necessary information. Probably not true.
- Some groups of genes are regulated by the same TFs (e.g. operons): prior information?
- The experiments are not i.i.d (replicates, different situations...).
- Adding priors on motifs (e.g. feed-forward loops) is an option for future work.

Acknowledgments

Fantine Mordelet

Paola Vera-Licona

Jean-Philippe Vert

Thank you for your attention!