The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler

Color test

I just want to be

sure that all my favourite colors

are

being displayed correctly on this

new

device. If not I'll modify them.

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues 0000	The AMOR sampler

Inferring cosmic particles TEST seminar

Rémi Bardenet

LAL, LRI, University of Paris-Sud XI

February 23rd, 2012

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler 00
Contonto			

2 A generative model for the tank signals

3 MCMC issues

The Pierre Auger Experiment ●○○	A generative model for the tank signals	MCMC issues	The AMOR sampler

A cosmic shower

The Pierre Auger Experiment ○●○	A generative model for the tank signals	MCMC issues	The AMOR sampler
Google Earth tour			

The Pierre Auger Experiment $\circ \circ \bullet$

A generative model for the tank signals $_{\rm OOO}$

MCMC issues

The AMOR sampler 00

A cosmic shower (aka flying Greek letters)

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler
	000		

A glance at tank signals

7/15

The Pierre Auger Experiment	A generative model for the tank signals ●○○	MCMC issues	The AMOR sampler

A glance at tank signals

The Pierre Auger Experiment	A generative model for the tank signals ●○○	MCMC issues	The AMOR sampler

A glance at tank signals

(a) Muonic signal amplitude distribution

(b) Muonic time response model p_{τ,t_d}

Mean number of Photo-electrons per bin & per muon

$$ar{n}_i(A_{oldsymbol{\mu}},t_{oldsymbol{\mu}})=A_{oldsymbol{\mu}}\int_{t_{i-1}}^{t_i}p_{ au,t_d}(t-t_{oldsymbol{\mu}})dt.$$

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler
000	000	0000	00

 n_i Poisson with mean $\bar{n}_i(\mathbf{A}_{\mu}, \mathbf{t}_{\mu}) = \sum_{j=1}^{N_{\mu}} \bar{n}_i(A_{\mu_j}, t_{\mu_j}),$

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler 00
MCMC issues			

Possibly high dimensions but also highly correlated model.

- Use adaptive proposals.
- The number of muons N_{μ} is unknown.
 - Use a nonparametric prior or
 - use a Reversible Jump sampler.
- Likelihood $\mathcal{P}(\mathbf{n}|\mathbf{A}_{\mu},\mathbf{t}_{\mu})$ is permutation invariant.
 - Marginals are useless, a problem known as label-switching.

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler
MCMC issues			

- Possibly high dimensions but also highly correlated model.
 - Use adaptive proposals.
- The number of muons N_{μ} is unknown.
 - Use a nonparametric prior or
 - use a Reversible Jump sampler.
- ▶ Likelihood _P(**n**|**A**_µ, **t**_µ) is permutation invariant.
 - Marginals are useless, a problem known as label-switching.

The Pierre Auger Experiment	A generative model for the tank signals 000	MCMC issues	The AMOR sampler
MCMC issues			

- Possibly high dimensions but also highly correlated model.
 - Use adaptive proposals.
- The number of muons N_{μ} is unknown.
 - Use a nonparametric prior or
 - use a Reversible Jump sampler.
- Likelihood $\mathcal{P}(\mathbf{n}|\mathbf{A}_{\mu},\mathbf{t}_{\mu})$ is permutation invariant.
 - Marginals are useless, a problem known as label-switching.

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler
Adaptive Metropoli	s		

- When the target π(x) is multivariate Gaussian with covariance Σ_π, the optimal choice of Σ is of the order of (2.38)²Σ_π/d See Roberts et al. 07
- You can approximate this with proposals

$$q(.|X_t) = \mathcal{N}(\cdot | X_t, c\Sigma_t)$$

with

$$\Sigma_t = \frac{1}{T} \sum_{i=1}^T (X_i - \bar{X}) (X_i - \bar{X})^T.$$

See Haario et al. 01

▶ Wake up, audience: Is the new chain Markovian ?

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler
Adaptive Metropoli	s		

- When the target π(x) is multivariate Gaussian with covariance Σ_π, the optimal choice of Σ is of the order of (2.38)²Σ_π/d See Roberts et al. 07
- You can approximate this with proposals

$$q(.|X_t) = \mathcal{N}(\cdot | X_t, c\Sigma_t)$$

with

$$\Sigma_t = \frac{1}{T} \sum_{i=1}^T (X_i - \bar{X}) (X_i - \bar{X})^T.$$

See Haario et al. 01

▶ Wake up, audience: Is the new chain Markovian ?

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler 00
Reversible Jump N	ІСМС		

- Nonparametric prior: needs simple model with conjugacy properties for easy sampling, Neal 00.
- RJMCMC Green 05: MCMC kernel on

I

$$igcup_{\mu=1}^{\mathcal{N}_{\mu}^{\mathsf{max}}} \{\mathcal{N}_{\mu}\} imes \{ ext{ Parameter space for } \mathcal{N}_{\mu} ext{ muons } \}.$$

RJMCMC needs careful design of transdimensional moves.

The Pierre Auger Experiment	A generative model for the tank signals 000	MCMC issues ○○○●	The AMOR sampler

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues ○○○●	The AMOR sampler

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues ○○○●	The AMOR sampler

The Pierre Auger Experiment	A generative model for the tank signals 000	MCMC issues	The AMOR sampler ●○

The AMOR sampler

AMOR $(\pi(x), X_0, T, \mu_0, \Sigma_0, c)$ 1 $S \leftarrow \emptyset$ 2 for $t \leftarrow 1$ to T 3 $\Sigma \leftarrow c\Sigma_{t-1} \triangleright scaled adaptive covariance$ $\widetilde{X} \sim \mathcal{N}(\cdot | X_{t-1}, \Sigma)$ \triangleright proposal 4 $\widetilde{P} \sim \operatorname*{arg\,min}_{P \subset \mathfrak{M}} L_{(\mu_{t-1}, \Sigma_{t-1})}(P\widetilde{X})$ 5▷ pick an optimal permutation $\widetilde{X} \leftarrow \widetilde{P}\widetilde{X} \qquad \triangleright \ permute$ 6 if $\frac{\pi(\widetilde{X})\sum_{P\in\mathfrak{P}}\mathcal{N}(PX_{t-1}|X,\Sigma)}{\pi(X_{t-1})\sum_{P\in\mathfrak{P}}\mathcal{N}(PX|X_{t-1},\Sigma)} > \mathcal{U}[0,1] \text{ then}$ 7 $X_t \leftarrow X \qquad \triangleright \ accept$ 8 9 else 10 $X_t \leftarrow X_{t-1} \qquad \triangleright \ reject$ $\mathcal{S} \leftarrow \mathcal{S} \cup \{X_t\}$ \triangleright update posterior sample 11 $\mu_t \leftarrow \mu_{t-1} + \frac{1}{\cdot} \left(X_t - \mu_{t-1} \right) \qquad \qquad \triangleright \textit{ update running mean and covariance}$ 12 $\Sigma_t \leftarrow \Sigma_{t-1} + \frac{1}{4} \left(\left(X_t - \mu_{t-1} \right) \left(X_t - \mu_{t-1} \right)^{\mathsf{T}} - \Sigma_{t-1} \right)$ 13 14return S

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler ⊙●

(Scientific) conclusion (and ads)

- Particle Physics is cool,
- MCMC is neat,
- Mixing the two is great.
- To learn more on cosmic rays and Auger: Karim Louedec's thesis (link).
- On the model & AMOR: our last AISTATS paper (link) and a submitted Physics paper I can probably send you.
- On adaptive MCMC: see Fort et al 2011 (link)
- And if you are interested in a super prog metal concert in Paris in March, ask me tickets!

The Pierre Auger Experiment	A generative model for the tank signals	MCMC issues	The AMOR sampler ⊙●

(Scientific) conclusion (and ads)

- Particle Physics is cool,
- MCMC is neat,
- Mixing the two is great.
- To learn more on cosmic rays and Auger: Karim Louedec's thesis (link).
- On the model & AMOR: our last AISTATS paper (link) and a submitted Physics paper I can probably send you.
- On adaptive MCMC: see Fort et al 2011 (link)
- And if you are interested in a super prog metal concert in Paris in March, ask me tickets!