Estimation adaptative dans le cadre d'une modélisation d'interactions poissoniennes et application à des données génomiques

Laure SANSONNET - Université Paris Sud

Mardi 15 mai 2012
Séminaire TEST organisé par les SylvainS,
- Télécom ParisTech -

Contents

(1) Biological motivation and our model
(2) Our method and general results
(3) Implementation procedure

4 Application to genomic data

Introduction

- Two given events modeled by point processes $P 1$ and $P 2$: how does $P 1$ influence $P 2$?
- Any type of interaction, for example: in neurosciences, in economics, in genomics, ...
- "DNA case": study of favored or avoided distances between two given motifs along a genome.
- Motif $=$ sequence of letters in the alphabet $\{a, c, g, t\}$.
- Genomes are long and motifs of interest are short. \rightarrow we work in a continuous framework.
\rightarrow occurrences of a motif $=$ a point process lying in $[0 ; T]$, where T is the normalized length of the studied genome.
- To study the influence of $P 2$ on $P 1$, we just invert their roles in the model.

Poisson process on the real line

Let N be a random countable set of points of \mathbb{R} (here).

- N_{A} number of points of N in A,
- $d N=\sum_{X \in N} \delta_{X}$.

Poisson process

- N_{A} obeys a Poisson law $\mathcal{P}(\nu(A))$,
- if A_{1}, \ldots, A_{ℓ} are disjoint measurable sets, $N_{A_{1}}, \ldots, N_{A_{\ell}}$ are independent random variables.
ν is a measure called "mean measure".
Generally, $d \nu(t)=h(t) d t$.
If $h=$ constant, N is a homogeneous Poisson process.

Our model

We observe the occurrences of both given motifs:

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.
- Children : Poisson process N with intensity $\sum_{i=1}^{n} h\left(t-U_{i}\right)$.

Our model

We observe the occurrences of both given motifs:

- Parents : U_{1}, \ldots, U_{n} i.i.d. uniform random variables on $[0 ; T]$.
- Children : Poisson process N with intensity $\sum_{i=1}^{n} h\left(t-U_{i}\right)$.

Aim: Estimate h.

Remarks

In genomics:

- The first motif of interest is a rare word and is modeled by a homogeneous Poisson process N^{0} on $[0 ; T]$.
- Conditionally to the event "the number of points falling into [$0 ; T$] is $n^{\prime \prime}$, the points of N^{0} (i.e. the parents) obey the same law as a n-sample of uniform random variables on $[0 ; T]$.
- With very high probability, n is proportional to T. \rightarrow the asymptotic considered in genomics: "DNA case".

Remarks

In genomics:

- The first motif of interest is a rare word and is modeled by a homogeneous Poisson process N^{0} on $[0 ; T]$.
- Conditionally to the event "the number of points falling into [$0 ; T$] is $n^{\prime \prime}$, the points of N^{0} (i.e. the parents) obey the same law as a n-sample of uniform random variables on $[0 ; T]$.
- With very high probability, n is proportional to T. \rightarrow the asymptotic considered in genomics: "DNA case".
Hawkes process:
- Gusto and Schbath (2005), Reynaud-Bouret and Schbath (2010), Carstensen et al. (2010).

Remarks

In genomics:

- The first motif of interest is a rare word and is modeled by a homogeneous Poisson process N^{0} on $[0 ; T]$.
- Conditionally to the event "the number of points falling into [$0 ; T$] is $n^{\prime \prime}$, the points of N^{0} (i.e. the parents) obey the same law as a n-sample of uniform random variables on [$0 ; T$].
- With very high probability, n is proportional to T. \rightarrow the asymptotic considered in genomics: "DNA case".
Hawkes process:
- Gusto and Schbath (2005), Reynaud-Bouret and Schbath (2010), Carstensen et al. (2010).

Our model:

- no phenomenons of spontaneous apparition and self-excitation,
- but a nonparametric method of estimation, using a wavelet thresholding rule (no sparsity issues) and a double asymptotic.

Framework

- Assumption: $h \in \mathbb{L}_{1}(\mathbb{R}) \cap \mathbb{L}_{\infty}(\mathbb{R})$.
- Decomposition of h on the Haar basis (obtained by dilatations and translations of $\phi=\mathbf{1}_{[0 ; 1]}$ and $\left.\psi=\mathbf{1}_{\left[\frac{1}{2} ; 1\right]}-\mathbf{1}_{\left[0 ; \frac{1}{2}\right]}\right)$:

$$
h=\sum_{\lambda \in \Lambda} \beta_{\lambda} \varphi_{\lambda} \quad \text { with } \quad \beta_{\lambda}=\int_{\mathbb{R}} h(x) \varphi_{\lambda}(x) d x
$$

where $\Lambda=\{\lambda=(j, k): j \geqslant-1, k \in \mathbb{Z}\}$ and $\forall x \in \mathbb{R}$,

$$
\forall \lambda=(j, k) \in \Lambda, \varphi_{\lambda}(x)=\left\{\begin{array}{cl}
\phi(x-k) & \text { if } j=-1 \\
2^{j / 2} \psi\left(2^{j} x-k\right) & \text { otherwise }
\end{array}\right.
$$

- For the theoretical results, we have used the decomposition of h on a particular biorthogonal wavelet basis, built by Cohen et al. (1992).

Framework

- Assumption: $h \in \mathbb{L}_{1}(\mathbb{R}) \cap \mathbb{L}_{\infty}(\mathbb{R})$.
- Decomposition of h on the Haar basis (obtained by dilatations and translations of $\phi=\mathbf{1}_{[0 ; 1]}$ and $\left.\psi=\mathbf{1}_{\left[\frac{1}{2} ; 1\right]}-\mathbf{1}_{\left[0 ; \frac{1}{2}\right]}\right)$:

$$
h=\sum_{\lambda \in \Lambda} \beta_{\lambda} \varphi_{\lambda} \quad \text { with } \quad \beta_{\lambda}=\int_{\mathbb{R}} h(x) \varphi_{\lambda}(x) d x
$$

where $\Lambda=\{\lambda=(j, k): j \geqslant-1, k \in \mathbb{Z}\}$ and $\forall x \in \mathbb{R}$,

$$
\forall \lambda=(j, k) \in \Lambda, \varphi_{\lambda}(x)=\left\{\begin{array}{cl}
\phi(x-k) & \text { if } j=-1 \\
2^{j / 2} \psi\left(2^{j} x-k\right) & \text { otherwise }
\end{array}\right.
$$

- For the theoretical results, we have used the decomposition of h on a particular biorthogonal wavelet basis, built by Cohen et al. (1992).

Aim: Estimate the β_{λ} 's.

Framework

For all λ in $\Lambda, \hat{\beta}_{\lambda}=\frac{G\left(\varphi_{\lambda}\right)}{n}$, with

$$
G\left(\varphi_{\lambda}\right)=\int_{\mathbb{R}} \sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right] d N_{t}
$$

Framework

For all λ in $\Lambda, \hat{\beta}_{\lambda}=\frac{G\left(\varphi_{\lambda}\right)}{n}$, with

$$
G\left(\varphi_{\lambda}\right)=\int_{\mathbb{R}} \sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right] d N_{t}
$$

Lemma

For all $\lambda \in \Lambda, \mathbb{E}\left(G\left(\varphi_{\lambda}\right)\right)=n \int_{\mathbb{R}} \varphi_{\lambda}(x) h(x) d x$, i.e. $\hat{\beta}_{\lambda}$ is an unbiased estimator for β_{λ}.

Framework

For all λ in $\Lambda, \hat{\beta}_{\lambda}=\frac{G\left(\varphi_{\lambda}\right)}{n}$, with

$$
G\left(\varphi_{\lambda}\right)=\int_{\mathbb{R}} \sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right] d N_{t}
$$

Lemma

For all $\lambda \in \Lambda, \mathbb{E}\left(G\left(\varphi_{\lambda}\right)\right)=n \int_{\mathbb{R}} \varphi_{\lambda}(x) h(x) d x$, i.e. $\hat{\beta}_{\lambda}$ is an unbiased estimator for β_{λ}.
Furthermore, its variance is upper bounded as follows:

$$
\operatorname{Var}\left(\hat{\beta}_{\lambda}\right) \leqslant C\left\{\frac{1}{n}+\frac{n}{T^{2}}\right\}
$$

Description of our method

- Assumption: h is compactly supported in $[-A ; A]$, with $A>0$ ($A=$ the maximal memory along DNA sequences).

Description of our method

- Assumption: h is compactly supported in $[-A ; A]$, with $A>0$ ($A=$ the maximal memory along DNA sequences).
- $\Gamma=\left\{\lambda=(j, k) \in \Lambda:-1 \leqslant j \leqslant j_{0}, k \in \mathcal{K}_{j}\right\}$ a deterministic subset of Λ with $j_{0} \in \mathbb{N}^{*} \rightarrow|\Gamma| \simeq 2^{j_{0}}$.

Description of our method

- Assumption: h is compactly supported in $[-A ; A]$, with $A>0$ ($A=$ the maximal memory along DNA sequences).
- $\Gamma=\left\{\lambda=(j, k) \in \Lambda:-1 \leqslant j \leqslant j_{0}, k \in \mathcal{K}_{j}\right\}$ a deterministic subset of Λ with $j_{0} \in \mathbb{N}^{*} \rightarrow|\Gamma| \simeq 2^{j_{0}}$.
- Given some parameter $\gamma>0$, for any $\lambda \in \Gamma$, the threshold:

$$
\eta_{\lambda}(\gamma, \Delta)=\sqrt{2 \gamma j_{0} \widetilde{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\Delta \frac{N_{\mathbb{R}}}{n}
$$

Description of our method

- Assumption: h is compactly supported in $[-A ; A]$, with $A>0$ ($A=$ the maximal memory along DNA sequences).
- $\Gamma=\left\{\lambda=(j, k) \in \Lambda:-1 \leqslant j \leqslant j_{0}, k \in \mathcal{K}_{j}\right\}$ a deterministic subset of Λ with $j_{0} \in \mathbb{N}^{*} \rightarrow|\Gamma| \simeq 2^{j 0}$.
- Given some parameter $\gamma>0$, for any $\lambda \in \Gamma$, the threshold:

$$
\eta_{\lambda}(\gamma, \Delta)=\sqrt{2 \gamma j_{0} \widetilde{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\Delta \frac{N_{\mathbb{R}}}{n}
$$

- Δ a positive quantity (of order $\frac{j_{0}^{2} 2^{j} / 2}{n}+\frac{j_{0}}{\sqrt{T}}+\frac{\sqrt{j_{0} n}}{T}$ for theoretical results),
- $N_{\mathbb{R}}=$ number of points of the process N lying in \mathbb{R},
- $B\left(\frac{\varphi_{\lambda}}{n}\right)=\frac{1}{n}\left\|\sum_{i=1}^{n}\left[\varphi_{\lambda}\left(\cdot-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(\cdot-U)\right)\right]\right\|_{\infty^{\prime}}$,
- $\widetilde{V}\left(\frac{\varphi_{\lambda}}{n}\right)=\frac{1}{n^{2}}\left(\hat{V}\left(\varphi_{\lambda}\right)+\sqrt{2 \gamma j_{0} \hat{V}\left(\varphi_{\lambda}\right) B^{2}\left(\varphi_{\lambda}\right)}+3 \gamma j_{0} B^{2}\left(\varphi_{\lambda}\right)\right)$,
- $\hat{V}\left(\varphi_{\lambda}\right)=\int_{\mathbb{R}}\left(\sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right]\right)^{2} d N_{t}$.

Description of our method

$$
\eta_{\lambda}(\gamma, \Delta)=\sqrt{2 \gamma j_{0} \widetilde{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\Delta \frac{N_{\mathbb{R}}}{n}
$$

- B, \hat{V} and \widetilde{V} only depend on the observations and can be exactly computed.
- $\tilde{\beta}$ the estimator of $\beta=\left(\beta_{\lambda}\right)_{\lambda \in \Lambda}$ associated with the previous thresholding rule:

$$
\tilde{\beta}=\left(\hat{\beta}_{\lambda} \mathbf{1}_{\left|\hat{\beta}_{\lambda}\right| \geqslant \eta_{\lambda}(\gamma, \Delta)} \mathbf{1}_{\lambda \in \Gamma}\right)_{\lambda \in \Lambda} .
$$

- $\tilde{h}=\sum_{\lambda \in \Lambda} \tilde{\beta}_{\lambda} \varphi_{\lambda}$ an estimator of h that only depends on the choice of (γ, Δ) and j_{0} fixed later.

Main results

An oracle type inequality.

Theorem

We assume that $n \geqslant 2, j_{0} \in \mathbb{N}^{*}$ such that $2^{j_{0}} \leqslant n<2^{j_{0}+1}$, $\gamma>2 \log 2$ and Δ is defined in a technical way.
Then the estimator \tilde{h}, previously defined, satisfies

$$
\begin{aligned}
& \mathbb{E}\left(\|\tilde{h}-h\|_{2}^{2}\right) \\
& \leqslant C_{1} \inf _{m \subset \Gamma}\left\{\sum_{\lambda \notin m} \beta_{\lambda}^{2}+|m|\left[\frac{1}{n}+\frac{n}{T^{2}}\right](\log n)^{4}\right\}+C_{2}\left[\frac{1}{n}+\frac{n}{T^{2}}\right] .
\end{aligned}
$$

Main results

An oracle type inequality.

Theorem

We assume that $n \geqslant 2, j_{0} \in \mathbb{N}^{*}$ such that $2^{j_{0}} \leqslant n<2^{j_{0}+1}$, $\gamma>2 \log 2$ and Δ is defined in a technical way.
Then the estimator \tilde{h}, previously defined, satisfies

$$
\begin{aligned}
& \mathbb{E}\left(\|\tilde{h}-h\|_{2}^{2}\right) \\
& \leqslant C_{1} \inf _{m \subset \Gamma}\left\{\sum_{\lambda \notin m} \beta_{\lambda}^{2}+|m|\left[\frac{1}{n}+\frac{n}{T^{2}}\right](\log n)^{4}\right\}+C_{2}\left[\frac{1}{n}+\frac{n}{T^{2}}\right] .
\end{aligned}
$$

"DNA case" (n proportional to T)

$$
\mathbb{E}\left(\|\tilde{h}-h\|_{2}^{2}\right) \leqslant C_{1} \inf _{m \subset \Gamma}\left\{\sum_{\lambda \notin m} \beta_{\lambda}^{2}+\frac{(\log T)^{4}}{T}|m|\right\}+\frac{C_{2}}{T}
$$

Main results

A minimax result on Besov balls still with n proportional to T.

$$
\mathcal{B}_{2, \infty}^{s}(R)=\left\{f=\sum_{\lambda \in \Lambda} \beta_{\lambda} \varphi_{\lambda}, \forall j \geqslant-1, \sum_{k \in \mathcal{K}_{j}} \beta_{(j, k)}^{2} \leqslant R^{2} 2^{-2 j s}\right\}
$$

Main results

A minimax result on Besov balls still with n proportional to T.

$$
\mathcal{B}_{2, \infty}^{s}(R)=\left\{f=\sum_{\lambda \in \Lambda} \beta_{\lambda} \varphi_{\lambda}, \forall j \geqslant-1, \sum_{k \in \mathcal{K}_{j}} \beta_{(j, k)}^{2} \leqslant R^{2} 2^{-2 j s}\right\}
$$

Corollary ("DNA case")

Let $R>0$ and $s \in \mathbb{R}$ such that $0<s<r+1$. Assume that $h \in \mathcal{B}_{2, \infty}^{s}(R)$ and n is proportional to T.
Then the estimator \tilde{h} satisfies

$$
\mathbb{E}\left(\|\tilde{h}-h\|_{2}^{2}\right) \leqslant C\left(\frac{(\log T)^{4}}{T}\right)^{\frac{2 s}{2 s+1}}
$$

Algorithm

From now on, we consider "DNA case": n is proportional to T.
Computation of the family of random thresholds $\left(\eta_{\lambda}(\gamma, \delta)\right)_{\lambda \in \Gamma}$:

$$
\eta_{\lambda}(\gamma, \delta)=\sqrt{2 \gamma j_{0} \hat{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\frac{\delta}{\sqrt{T}} \frac{N_{\mathbb{R}}}{n},
$$

where $\Delta=\frac{\delta}{\sqrt{T}}$ (because n is proportional to T).

Algorithm

From now on, we consider "DNA case": n is proportional to T.
Computation of the family of random thresholds $\left(\eta_{\lambda}(\gamma, \delta)\right)_{\lambda \in \Gamma}$:

$$
\eta_{\lambda}(\gamma, \delta)=\sqrt{2 \gamma j_{0} \hat{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\frac{\delta}{\sqrt{T}} \frac{N_{\mathbb{R}}}{n},
$$

where $\Delta=\frac{\delta}{\sqrt{T}}$ (because n is proportional to T).

- We set $j_{0}=5$ in the sequel.

Algorithm

From now on, we consider "DNA case": n is proportional to T.
Computation of the family of random thresholds $\left(\eta_{\lambda}(\gamma, \delta)\right)_{\lambda \in \Gamma}$:

$$
\eta_{\lambda}(\gamma, \delta)=\sqrt{2 \gamma j_{0} \hat{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\frac{\delta}{\sqrt{T}} \frac{N_{\mathbb{R}}}{n},
$$

where $\Delta=\frac{\delta}{\sqrt{T}}$ (because n is proportional to T).

- We set $j_{0}=5$ in the sequel.
- Computation of $\sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right]$, with a cascade algorithm (inspired by Mallat (1989)), in order to compute the coefficients $\hat{\beta}_{\lambda}, \hat{V}$ and B.

Algorithm

From now on, we consider "DNA case": n is proportional to T.
Computation of the family of random thresholds $\left(\eta_{\lambda}(\gamma, \delta)\right)_{\lambda \in \Gamma}$:

$$
\eta_{\lambda}(\gamma, \delta)=\sqrt{2 \gamma j_{0} \hat{V}\left(\frac{\varphi_{\lambda}}{n}\right)}+\frac{\gamma j_{0}}{3} B\left(\frac{\varphi_{\lambda}}{n}\right)+\frac{\delta}{\sqrt{T}} \frac{N_{\mathbb{R}}}{n},
$$

where $\Delta=\frac{\delta}{\sqrt{T}}$ (because n is proportional to T).

- We set $j_{0}=5$ in the sequel.
- Computation of $\sum_{i=1}^{n}\left[\varphi_{\lambda}\left(t-U_{i}\right)-\frac{n-1}{n} \mathbb{E}_{\pi}\left(\varphi_{\lambda}(t-U)\right)\right]$, with a cascade algorithm (inspired by Mallat (1989)), in order to compute the coefficients $\hat{\beta}_{\lambda}, \hat{V}$ and B.
- Choice of the parameters γ and δ ?
\rightarrow calibration of parameters from a practical point of view.

Simulations

Some reconstructions.

$$
h_{1}=4 \times \mathbf{1}_{[0 ; 1]}
$$

Reconstruction of h_{1}
(true: dotted line, estimate: solid line) $n \simeq 1000$ and $T=10000$

$$
h_{2}=4 \times \frac{8}{3}\left(\mathbf{1}_{[0.5 ; 0.625]}+\mathbf{1}_{[1 ; 1.25]}\right)
$$

Reconstruction of h_{2}
(true: dotted line, estimate: solid line) $n \simeq 1000$ and $T=10000$

Simulations

What happens if we are wrong about the support of the function we want to estimate?

$$
h_{3}=4 \times \frac{1}{4}\left(\mathbf{1}_{[-0.75 ;-0.5]}+\mathbf{1}_{[4.25 ; 8]}\right)
$$

Reconstructions of h_{3} (true: dotted line, estimate: solid line) with different supports: top: $A=1$; middle: $A=5$; bottom: $A=10$

Simulations

A reconstruction of a smooth function: $h(t)=4 \times \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$.

Reconstruction of h on the Haar basis (true: dotted line, estimate: solid line)

$$
n \simeq 1000 \text { and } T=10000
$$

Simulations

A reconstruction of a smooth function: $h(t)=4 \times \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$.

Reconstruction of h on the Spline basis (true: dotted line, estimate: solid line)

$$
n \simeq 1000 \text { and } T=10000
$$

Influence promoters/genes in E. coli

Data:

- the sequence composed of both strands of E. coli genome of length 4639221 bases (we took 10000 bases for the maximal memory)
\rightarrow a sequence of length $9288442(=2 * 4639221+10000)$,
- locations of 4290 genes (we took the positions of the first base of coding sequences),
- locations of 1036 occurrences of the major promoter: tataat.

Influence promoters/genes in E. coli

Data:

- the sequence composed of both strands of E. coli genome of length 4639221 bases (we took 10000 bases for the maximal memory)
\rightarrow a sequence of length $9288442(=2 * 4639221+10000)$,
- locations of 4290 genes (we took the positions of the first base of coding sequences),
- locations of 1036 occurrences of the major promoter: tataat.

For convenience, we work on a scale of $1: 1000$ and we set
$T=9289$ and so $A=10$.

Influence promoters/genes in E. coli

How does the DNA motif tataat influence genes?

- parents = tataat,
- children $=$ genes.

Influence promoters/genes in E. coli

 How does the DNA motif tataat influence genes?- parents $=$ tataat,
- children $=$ genes .

Influence promoters/genes in E. coli

How does genes influence the DNA motif tataat?

- parents $=$ genes,
- children $=$ tataat.

Influence promoters/genes in E. coli

How does genes influence the DNA motif tataat?

- parents $=$ genes,
- children $=$ tataat.

Conclusion

- Our random thresholding procedure is optimal in the oracle and minimax setting.
- Some simulations illustrate the robustness of our procedure.
- The application to genomic data validates our procedure with a good detection of favored or avoided distances between occurrences of tataat and genes along the E. coli genome.

Conclusion

- Our random thresholding procedure is optimal in the oracle and minimax setting.
- Some simulations illustrate the robustness of our procedure.
- The application to genomic data validates our procedure with a good detection of favored or avoided distances between occurrences of tataat and genes along the E. coli genome.

Further possible extensions of our model:

- a more sophisticated model that takes into account the phenomenons of spontaneous apparition and self-excitation,
- an extension of our cascade algorithm to general wavelet bases and not only to Haar bases,
- a study of similar processes in the spatial framework.

References

Alan G. Hawkes (1971)
Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58(1): 83-90.

Gaëlle Gusto and Sophie Schbath (2005)
FADO: a statistical method to detect favored or avoided distances between occurrences of motifs using the Hawkes' model, Statistical Applications in Genetics and Molecular Biology, 4(1).
\square Patricia Reynaud-Bouret and Sophie Schbath (2010)
Adaptive estimation for Hawkes processes; application to genome analysis, The Annals of Statistics, 38(5): 2781-2822.

Lisbeth Carstensen, Albin Sandelin, Ole Winther and Niels R. Hansen (2010) Multivariate Hawkes process models of the occurrence of regulatory elements, BMC Bioinformatics, 11(456).Albert Cohen, Ingrid Daubechies and Jean-Christophe Feauveau (1992) Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 45: 485-560.

References

\square Víctor H. de la Peña and Evarist Giné (1999)
Decoupling: From Dependence to Independence, Probability and its Applications (New York). Springer, New York.
\square Stéphane G. Mallat (1989)
Multiresolution approximations and wavelet orthonormal bases of $\mathbb{L}^{2}(\mathbb{R})$, Transactions of the American Mathematical Society, 315(1): 69-87.
\square Patricia Reynaud-Bouret and Vincent Rivoirard (2010)
Near optimal thresholding estimation of a Poisson intensity on the real line, Electronic Journal of Statistics, 4: 172-238.

Laure Sansonnet (2011)
Wavelet thresholding estimation in a Poissonian interactions model with application to genomic data,
submitted and available on my web page:
http://sites.google.com/site/lauresansonnet/

References

旺
Víctor H. de la Peña and Evarist Giné (1999)
Decoupling: From Dependence to Independence, Probability and its Applications (New York). Springer, New York.

Stéphane G. Mallat (1989)
Multiresolution approximations and wavelet orthonormal bases of $\mathbb{L}^{2}(\mathbb{R})$, Transactions of the American Mathematical Society, 315(1): 69-87.
\square Patricia Reynaud-Bouret and Vincent Rivoirard (2010)
Near optimal thresholding estimation of a Poisson intensity on the real line, Electronic Journal of Statistics, 4: 172-238.

Laure Sansonnet (2011)
Wavelet thresholding estimation in a Poissonian interactions model with application to genomic data,
submitted and available on my web page:
http://sites.google.com/site/lauresansonnet/

Thanks for your attention!

