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Introduction

Two given events modeled by point processes P1 and P2:
how does P1 influence P2?
Any type of interaction, for example:
in neurosciences, in economics, in genomics, . . .
"DNA case": study of favored or avoided distances between
two given motifs along a genome.
Motif = sequence of letters in the alphabet {a,c,g,t}.
Genomes are long and motifs of interest are short.
→ we work in a continuous framework.
→ occurrences of a motif = a point process lying in [0;T ],
where T is the normalized length of the studied genome.
To study the influence of P2 on P1, we just invert their roles
in the model.
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Poisson process on the real line

Let N be a random countable set of points of R (here).
NA number of points of N in A,
dN =

∑
X∈N δX .

Poisson process
NA obeys a Poisson law P(ν(A)),
if A1, . . . ,A` are disjoint measurable sets, NA1 , . . . ,NA` are
independent random variables.

ν is a measure called "mean measure".
Generally, dν(t) = h(t) dt.
If h = constant, N is a homogeneous Poisson process.
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Our model

• • • •
U1 U2 U3 U4

h(· − U1)

• • •

h(· − U2)

• • •

h(· − U3)

• • • •

h(· − U4)

• • • •• • •• • •• • • • • • • •

We observe the occurrences of both given motifs:

Parents : U1, . . . ,Un i.i.d. uniform random variables on [0;T ].

Children : Poisson process N with intensity
n∑

i=1

h(t − Ui ).

Aim: Estimate h.
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Remarks
In genomics:

The first motif of interest is a rare word and is modeled by a
homogeneous Poisson process N0 on [0;T ].
Conditionally to the event "the number of points falling into
[0;T ] is n", the points of N0 (i.e. the parents) obey the same
law as a n-sample of uniform random variables on [0;T ].
With very high probability, n is proportional to T .
→ the asymptotic considered in genomics: "DNA case".

Hawkes process:
Gusto and Schbath (2005), Reynaud-Bouret and Schbath
(2010), Carstensen et al. (2010).

Our model:
no phenomenons of spontaneous apparition and self-excitation,
but a nonparametric method of estimation, using a wavelet
thresholding rule (no sparsity issues) and a double asymptotic.



Genomics & Our model Our method & General results Implementation procedure Application

Remarks
In genomics:

The first motif of interest is a rare word and is modeled by a
homogeneous Poisson process N0 on [0;T ].
Conditionally to the event "the number of points falling into
[0;T ] is n", the points of N0 (i.e. the parents) obey the same
law as a n-sample of uniform random variables on [0;T ].
With very high probability, n is proportional to T .
→ the asymptotic considered in genomics: "DNA case".

Hawkes process:
Gusto and Schbath (2005), Reynaud-Bouret and Schbath
(2010), Carstensen et al. (2010).

Our model:
no phenomenons of spontaneous apparition and self-excitation,
but a nonparametric method of estimation, using a wavelet
thresholding rule (no sparsity issues) and a double asymptotic.



Genomics & Our model Our method & General results Implementation procedure Application

Remarks
In genomics:

The first motif of interest is a rare word and is modeled by a
homogeneous Poisson process N0 on [0;T ].
Conditionally to the event "the number of points falling into
[0;T ] is n", the points of N0 (i.e. the parents) obey the same
law as a n-sample of uniform random variables on [0;T ].
With very high probability, n is proportional to T .
→ the asymptotic considered in genomics: "DNA case".

Hawkes process:
Gusto and Schbath (2005), Reynaud-Bouret and Schbath
(2010), Carstensen et al. (2010).

Our model:
no phenomenons of spontaneous apparition and self-excitation,
but a nonparametric method of estimation, using a wavelet
thresholding rule (no sparsity issues) and a double asymptotic.



Genomics & Our model Our method & General results Implementation procedure Application

Framework

Assumption: h ∈ L1(R) ∩ L∞(R).
Decomposition of h on the Haar basis (obtained by dilatations
and translations of φ = 1[0;1] and ψ = 1] 1

2 ;1] − 1[0; 1
2 ]):

h =
∑
λ∈Λ

βλϕλ with βλ =

∫
R
h(x)ϕλ(x) dx ,

where Λ = {λ = (j , k) : j > −1, k ∈ Z} and ∀x ∈ R,

∀λ = (j , k) ∈ Λ, ϕλ(x) =

{
φ(x − k) if j = −1

2j/2ψ(2jx − k) otherwise
.

For the theoretical results, we have used the decomposition of
h on a particular biorthogonal wavelet basis, built by Cohen et
al. (1992).

Aim: Estimate the βλ’s.
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Framework

For all λ in Λ, β̂λ =
G (ϕλ)

n
, with

G (ϕλ) =

∫
R

n∑
i=1

[
ϕλ(t − Ui )−

n − 1
n

Eπ(ϕλ(t − U))

]
dNt .

Lemma

For all λ ∈ Λ, E(G (ϕλ)) = n
∫
R
ϕλ(x)h(x) dx, i.e. β̂λ is an

unbiased estimator for βλ.
Furthermore, its variance is upper bounded as follows:

Var(β̂λ) 6 C
{
1
n

+
n
T 2

}
.
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Description of our method
Assumption: h is compactly supported in [−A;A], with A > 0
(A = the maximal memory along DNA sequences).

Γ =
{
λ = (j , k) ∈ Λ : −1 6 j 6 j0, k ∈ Kj

}
a deterministic

subset of Λ with j0 ∈ N∗ → |Γ| ' 2j0 .
Given some parameter γ > 0, for any λ ∈ Γ, the threshold:

ηλ(γ,∆) =

√
2γj0Ṽ

(ϕλ
n

)
+
γj0
3
B
(ϕλ

n

)
+ ∆

NR
n

∆ a positive quantity (of order j202j0/2

n + j0√
T

+
√

j0n
T for

theoretical results),
NR = number of points of the process N lying in R,
B
(
ϕλ
n

)
= 1

n

∥∥∑n
i=1

[
ϕλ(· − Ui )− n−1

n Eπ(ϕλ(· − U))
]∥∥
∞,

Ṽ
(
ϕλ
n

)
= 1

n2

(
V̂ (ϕλ) +

√
2γj0V̂ (ϕλ)B2(ϕλ) + 3γj0B2(ϕλ)

)
,

V̂ (ϕλ) =
∫
R
(∑n

i=1

[
ϕλ(t − Ui )− n−1

n Eπ(ϕλ(t − U))
])2 dNt .
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(ϕλ
n

)
+
γj0
3
B
(ϕλ

n

)
+ ∆

NR
n

∆ a positive quantity (of order j202j0/2

n + j0√
T

+
√

j0n
T for

theoretical results),
NR = number of points of the process N lying in R,
B
(
ϕλ
n

)
= 1

n

∥∥∑n
i=1

[
ϕλ(· − Ui )− n−1

n Eπ(ϕλ(· − U))
]∥∥
∞,

Ṽ
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Description of our method

ηλ(γ,∆) =

√
2γj0Ṽ

(ϕλ
n

)
+
γj0
3
B
(ϕλ

n

)
+ ∆

NR
n

B , V̂ and Ṽ only depend on the observations and can be
exactly computed.
β̃ the estimator of β = (βλ)λ∈Λ associated with the previous
thresholding rule:

β̃ =
(
β̂λ1|β̂λ|>ηλ(γ,∆)1λ∈Γ

)
λ∈Λ

.

h̃ =
∑
λ∈Λ

β̃λϕλ an estimator of h that only depends on the

choice of (γ,∆) and j0 fixed later.
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Main results
An oracle type inequality.

Theorem
We assume that n > 2, j0 ∈ N∗ such that 2j0 6 n < 2j0+1,
γ > 2 log 2 and ∆ is defined in a technical way.
Then the estimator h̃, previously defined, satisfies

E
(
‖h̃ − h‖22

)
6 C1 inf

m⊂Γ

{∑
λ 6∈m

β2λ + |m|

[
1
n

+
n
T 2

]
(log n)4

}
+ C2

[
1
n

+
n
T 2

]
.

"DNA case" (n proportional to T )

E
(
‖h̃ − h‖22

)
6 C1 inf

m⊂Γ

{∑
λ6∈m

β2λ +
(logT )4

T
|m|

}
+

C2

T
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Main results

A minimax result on Besov balls still with n proportional to T .

Bs2,∞(R) =

f =
∑
λ∈Λ

βλϕλ,∀j > −1,
∑
k∈Kj

β2(j ,k) 6 R22−2js



Corollary ("DNA case")
Let R > 0 and s ∈ R such that 0 < s < r + 1. Assume that
h ∈ Bs2,∞(R) and n is proportional to T .
Then the estimator h̃ satisfies

E
(
‖h̃ − h‖22

)
6 C

(
(logT )4

T

) 2s
2s+1

.
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Algorithm

From now on, we consider "DNA case": n is proportional to T .
Computation of the family of random thresholds (ηλ(γ, δ))λ∈Γ:

ηλ(γ, δ) =

√
2γj0V̂

(ϕλ
n

)
+
γj0
3
B
(ϕλ

n

)
+

δ√
T

NR
n
,

where ∆ = δ√
T

(because n is proportional to T ).

We set j0 = 5 in the sequel.

Computation of
n∑

i=1

[
ϕλ(t − Ui )−

n − 1
n

Eπ(ϕλ(t − U))

]
,

with a cascade algorithm (inspired by Mallat (1989)),
in order to compute the coefficients β̂λ, V̂ and B .
Choice of the parameters γ and δ?
→ calibration of parameters from a practical point of view.
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Simulations

Some reconstructions.

h1 = 4× 1[0;1] h2 = 4× 8
3

(
1[0.5;0.625] + 1[1;1.25]

)

Reconstruction of h1 Reconstruction of h2

(true: dotted line, estimate: solid line) (true: dotted line, estimate: solid line)

n ' 1000 and T = 10000 n ' 1000 and T = 10000



Genomics & Our model Our method & General results Implementation procedure Application

Simulations
What happens if we are wrong about the support of the function
we want to estimate?

h3 = 4× 1
4

(
1[−0.75;−0.5] + 1[4.25;8]

)

Reconstructions of h3 (true: dotted line, estimate: solid line)

with different supports: top: A = 1; middle: A = 5; bottom: A = 10
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Simulations
A reconstruction of a smooth function: h(t) = 4× 1√

2π
e−t

2/2.

Reconstruction of h on the Haar basis

(true: dotted line, estimate: solid line)

n ' 1000 and T = 10000
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Simulations
A reconstruction of a smooth function: h(t) = 4× 1√

2π
e−t

2/2.

Reconstruction of h on the Spline basis

(true: dotted line, estimate: solid line)

n ' 1000 and T = 10000
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Influence promoters/genes in E. coli

Data:
the sequence composed of both strands of E. coli genome of
length 4 639 221 bases (we took 10 000 bases for the maximal
memory)
→ a sequence of length 9 288 442 (= 2 ∗ 4639221 + 10000),
locations of 4 290 genes (we took the positions of the first
base of coding sequences),
locations of 1 036 occurrences of the major promoter: tataat.

For convenience, we work on a scale of 1 : 1000 and we set
T = 9289 and so A = 10.



Genomics & Our model Our method & General results Implementation procedure Application

Influence promoters/genes in E. coli

Data:
the sequence composed of both strands of E. coli genome of
length 4 639 221 bases (we took 10 000 bases for the maximal
memory)
→ a sequence of length 9 288 442 (= 2 ∗ 4639221 + 10000),
locations of 4 290 genes (we took the positions of the first
base of coding sequences),
locations of 1 036 occurrences of the major promoter: tataat.

For convenience, we work on a scale of 1 : 1000 and we set
T = 9289 and so A = 10.



Genomics & Our model Our method & General results Implementation procedure Application

Influence promoters/genes in E. coli
How does the DNA motif tataat influence genes?

parents = tataat,
children = genes.
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Influence promoters/genes in E. coli
How does genes influence the DNA motif tataat?

parents = genes,
children = tataat.
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Conclusion

Our random thresholding procedure is optimal in the oracle
and minimax setting.
Some simulations illustrate the robustness of our procedure.
The application to genomic data validates our procedure with
a good detection of favored or avoided distances between
occurrences of tataat and genes along the E. coli genome.

Further possible extensions of our model:
a more sophisticated model that takes into account the
phenomenons of spontaneous apparition and self-excitation,
an extension of our cascade algorithm to general wavelet bases
and not only to Haar bases,
a study of similar processes in the spatial framework.
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