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Motivation : brain imaging - locate activated zones in a brain

(Collaboration with Alexandre Gramfort on brain imaging problems)
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The problem
Outline

Goal: find the active (i.e. non-zero) components of the sparse
signal decomposition.

Difficulty: high dimensional setting, potentially low number
of observations, high number of regressors.
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The simplified model
The Bayesian variable selection framework

Simplified model :

Y = GX +
√
τE ,

where

Y ∈ R
N×T is the observed signal

G ∈ R
N×P is the design matrix (known)

X ∈ R
P×T is the emitted signal, directly assumed to be sparse

E ∈ R
N×T is a standard Gaussian noise

For concision of notations: T = 1.
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The simplified model
The Bayesian variable selection framework

X can be equivalently defined by (m,Xm) where

m = (m1, · · · ,mP) ∈ M = {0, 1}P is the model, with mi = 0
iff Xi = 0,

Xm ∈ R
|m| collects the active rows of X , where |m| =∑i mi .

→ Sampling set:

Θ =
⋃

m∈M

(

{m} × R
|m|
)

.
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The simplified model
The Bayesian variable selection framework

Likelihood and prior distributions:

π(Y |m,Xm) = (2πτ)−N/2 exp
(

− 1

τ ‖Y − G·mXm‖2
2

)

.

π(Xm|m) = exp(−λ‖Xm‖1 − |m| log(cλ)), where λ ≥ 0.

π(m) = wm, where
∑

m∈M wm = 1.

Posterior distribution on Θ =
⋃

m∈M

(

{m} × R
|m|
)

:

π(m,Xm|Y ) ∝ wm c
−|m|
λ exp

(

− 1

2τ
‖Y − G·mXm‖2

2 − λ‖Xm‖1

)

.
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The simplified model
The Bayesian variable selection framework

Equivalent distribution in R
P : π(x)dν(x), where

dν(x) =
∑

m∈M





∏

i /∈Im

δ0(dxi ·)









∏

i∈Im

dxi ·



 ,

and

π(X ) ∝ ωmX
c
−|mX |
λ exp

(

− 1

2τ
‖Y − GX‖2

2 − λ‖X‖2,1

)

.
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The simplified model
The Bayesian variable selection framework

Goal : propose a transdimensional MCMC method to sample the
posterior distribution.

Robust in high dimensional settings

Can deal with non-differentiability in the penalization function

In harmony with sparsity assumption
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Two main ingredients
The algorithm

Goal of the Shrinkage Thresholding MALA (STMALA): build a
Markov chain converging to a target distribution with density with
respect to dν of the form

π(x) ∝ exp(−g(x) − ḡ(x)) ,

where

g : continuously differentiable, convex, such that ∇g is
Lg -Lipschitz,

ḡ : contains the non-differentiable part of π.

→ Applied with g(x) = 1

2τ ‖Y − Gx‖2
2

and

ḡ(x) = λ‖x‖2,1 − log
(

wmc
−|m|
λ

)

.
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Two main ingredients
The algorithm

Base: Metropolis Hastings algorithm (with dominating measure dµ)

Goal: sample a distribution πdµ known up to a
multiplicative constant.

Tool: a transition kernel q such that for any x , it is possible
to sample from q(x , ·)dµ.

An iteration starting from X t :

Sample Y t+1 according to q(X t , ·)dµ.
Compute the acceptance probability

α(X t ,Y t+1) = min

(

1,
π(Y t+1)q(Y t+1,X t)

π(X t)q(X t ,Y t+1)

)

.

Set X t+1 = Y t+1 with probability α(X t ,Y t+1) and
X t+1 = X t with probability 1 − α(X t ,Y t+1).

Amandine Schreck STMALA for Sparse Regression
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Two main ingredients
The algorithm

Under some assumptions, convergence (in some sens) of the
Metropolis Hastings algorithm occurs.

But: if q(x , ·) is too far from π, convergence is too slow.

Idea of MALA: use some knowledge about π to build q.
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Two main ingredients
The algorithm

Ingredient 1: The Metropolis Adjusted Langevin Algorithm
(MALA)

Goal: build a Markov chain converging to a target distribution with
density π(x) ∝ exp(−g(x)) with respect to Lebesgue measure,
where g is differentiable.

Amandine Schreck STMALA for Sparse Regression
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Two main ingredients
The algorithm

An iteration of MALA starting from X t :

(1) Propose a new point

Y t+1 = X t − σ2

2
∇g(X t) + σW t+1 ,

where W t+1 is a random vector with i.i.d. entries from
N (0, 1).

(2) Classical Acceptation/Rejection step.
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Two main ingredients
The algorithm

→ We cannot apply directly MALA as our target distribution is not
dominated by Lebesgue measure and ḡ is not differentiable.
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Two main ingredients
The algorithm

Ingredient 2: The proximal gradient algorithm (also known as
the Iterative Shrinkage Thresholding Algorithm)

Goal: minimize g + h where

g : continuously differentiable, convex, such that ∇g is
Lg -Lipschitz,

h: convex

→ generalisation of the gradient descent for non differentiable
functions.
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Two main ingredients
The algorithm

An iteration of the proximal gradient algorithm starting from xt :

(1) Define a local approximation of g + h at xt by

QL(x
t , x) = h(x) + g(xt) +

〈

x − xt ,∇g(xt)
〉

+
L

2
‖x − xt‖2

2 .

(2) Set xt+1 = argminxQL(x
t , x) = proxh/L

(

xt − 1

L
∇g(xt)

)

,
where

proxγh(u) = argminx

(

γh(x) +
1

2
‖x − u‖2

2

)

.
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Two main ingredients
The algorithm

An iteration of STMALA starting from X t :

(1) Propose a new point

Y t+1 = Ψ

(

X t − σ2

2
∇g(X t) + σW t+1

)

,

where W t+1 is a random vector with i.i.d. entries from
N (0, 1), Ψ is a shrinkage-thresholding operator.

(2) Classical Acceptation/Rejection step, with acceptance

probability α(x , y) = 1∧ π(y)q(y ,x)
π(x)q(x ,y) , where q(x , y) is the density

of the proposal distribution (explicitly known).
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Two main ingredients
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Examples of operators Ψ
Let γ > 0 be a fixed threshold.

Proximal (Prox): (Ψ1(u))i ,j = ui ,j

(

1 − γ
‖ui.‖2

)

+
,

Hard thresholding (HT):
(Ψ2(u))i ,j = ui ,j1‖ui.‖2>γ ,

Soft thresholding with vanishing shrinkage (STVS):

(Ψ3(u))i ,j = ui ,j

(

1 − γ2

‖ui·‖
2
2

)

+
.
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Figure : Shrinkage-Thresholding functions associated with the L2,1

proximal operator (Prox - left), the hard thresholding operator (HT -
center) and the soft thresholding operator with vanishing shrinkage
(STVS - right) in one dimension.
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Lemma

Let µ ∈ R
P and γ, σ > 0. Set Y = proxγ‖·‖1

(µ+ σW ) where

W ∈ R
P is a matrix of i.i.d random variables ∼ N (0, 1). The

distribution of Y ∈ R
P is given by

∑

m∈M





∏

i /∈Im

p1(µi) δ0(dz i )









∏

i∈Im

f1(µi , z i )dz i



 ,

where for any c , z ∈ R,

p1(c) = P {|c + ξ| ≤ γ} , with ξ ∼ N (0, σ2) ,

f1(c , z) =
(

2πσ2
)−1/2

exp

(

− 1

2σ2

∣

∣

∣

∣

(

1 +
γ

|z |

)

z − c

∣

∣

∣

∣

2

2

)

.
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Two main ingredients
The algorithm

The proposal mechanism of STMALA (with Ψ = Ψ1) starting from
x is equivalent to:

(i) sample m′ = (m′
1
, · · · ,m′

P) with (m′
i , i ∈ {1, · · · ,P})

independent and such that m′
i is a Bernoulli r.v. with success

parameter

1 − P

(

∣

∣

∣

(

x − σ2

2
∇g(x)

)

i

+ ξ
∣

∣

∣

2

≤ γ

)

ξ ∼ N (0, σ2) .

(ii) sample y = (yi )1≤i≤P in R
|m′| with independant components

such that for any i ∈ Im′ , the distribution of yi is proportional
to

exp

(

− 1

2σ2

∣

∣

∣

∣

(

1 +
γ

|yi |

)

yi −
(

x − σ2

2
∇g(x)

)

i

∣

∣

∣

∣

2
)

.
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Two main ingredients
The algorithm

A variant: STMALA with partial updating

For a fixed block size η, an iteration from X t becomes:

(1) Select a block at random, i.e. a set b of η indices in
{1, . . . ,P}.

(2) Propose a new point Y t+1 given by Y t+1

−b = X t
−b and

Y t+1

b = Zb where Z = Ψ

(

X t − σ2

2
∇g(X t) + σW t+1

)

.

(3) Acceptation/Rejection step

Amandine Schreck STMALA for Sparse Regression
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Two main ingredients
The algorithm

Under some classical assumptions, i.e.

regularity of the target density π,

super-exponential behavior of π,

positive measure of the acceptance set,

geometric ergodicity holds for STMALA (with Ψ = Ψ1 and
truncated gradient).

Example: π defined by

π(X ) ∝ ωmX
c
−|mX |
λ exp

(

− 1

2τ
‖Y − GX‖2

2 − λ‖X‖2,1 − v‖X‖2
2

)

,

satisfies these assumptions.
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Theorem

Under some “classical assumptions”, for any β ∈ (0, 1), there exist

C > 0 and ρ ∈ (0, 1) such that for any n ≥ 0 and any x ∈ R
P ,

‖Pn
Ψ1

(x , .) − π‖V ≤ C ρn V (x) ,

where V (x) ∝ π(x)−β and for any signed measure η,
‖η‖V = sup

f ,|f |≤V

|
∫

f dη|.

Amandine Schreck STMALA for Sparse Regression
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Two main ingredients
The algorithm

Sketch of proof (1): expression of the kernel

Transition kernel:

P(x ,A) =

∫

A

q(x , y)α(x , y)dν(y) + 1A(x)

∫

q(x , y)(1 − α(x , y))dν(y) ,

where

q(x , y) =
∏

i /∈Im

p (µ̃i (x))
∏

i∈Im

f (µ̃i(x), yi ) ,

and (truncated gradient)

µ̃(x) = x − σ2

2

D ∇g(x)

max (D, ‖∇g(x)‖2)
.
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Two main ingredients
The algorithm

Sketch of proof (2): main ingredients

By construction, π is invariant with respect to P ( i.e.

π(A) =
∫

π(dx)P(x ,A)).

The chain is aperiodic (i.e. no k-cycle for k ≥ 2) and
psi-irreducible (i.e. for any x , A there exists n such that
Pn(x ,A) > 0).

C such that C ∩ Sm is compact for any m are small sets for P

(i.e. there exists a measure ν̃ on R
P such that

Ptrunc (x ,A) ≥ ν̃(A)1C (x)).

Drift condition: there exist C1 ∈ (0, 1), C2 < ∞ and a small
set C such that PV (x) ≤ C1V (x) + C21C (x).

Amandine Schreck STMALA for Sparse Regression
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Two main ingredients
The algorithm

Sketch of proof (3): results for the drift

Final step for the drift:

lim sup
‖x‖→∞

∫

P(x , dy)V (y)

V (x)
< 1 .

Indeed

PV (x)

V (x)
≤
∫

α(x , y)
V (y)

V (x)
q(x , y)dν(y) + 1 −

∫

A(x)
q(x , y)dν(y) .

And

∫

A(x)
q(x , y)dν(y) ≥ C , lim sup

‖x‖→∞

∫

α(x , y)
π−β(y)

π−β(x)
q(x , y)dν(y) = 0 .

Amandine Schreck STMALA for Sparse Regression
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B(x,a)

x
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r

u

CΠ(x)

Figure : How to cut the integral
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Numerical illustrations
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Competitor: Reversible Jump MCMC

An iteration of RJMCMC starting from (m,X ):

Sample a new model m′ ∈ {0, 1}P uniformly among the
neighbors of m (by adding, deleting or replacing an active
component of m or by keeping m).

Sample a new point X ′ ∈ R
P such that X ′

−m′ = 0 and that
X ′

i = Xi for any i ∈ {1, . . . ,P} such that the i-th component
is active in m′ and in m.

Acceptation/Rejection step.

Amandine Schreck STMALA for Sparse Regression
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Main drawbacks of RJMCMC

As only local moves occur:

slow mixing

slow convergence

problems with high dimension (2P models)

problems with correlated designs (possible moves limited)

difficulties to escape from local maxima

Amandine Schreck STMALA for Sparse Regression
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

The data: Y = GX + E

N = 100, P = 16.

The components of E are samples of N (0, 1)

X = (Xi )1≤i≤P with Xi = 1i≤8.

Columns of G ∈ R
N×P : independant Gaussian samples

(uncorrelated designs).

Implementation parameters:

Prior on the models: mk are i.i.d. Bernoulli with success
parameter 0.1.

Starting point: empty model.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Interest of this model:

The posterior activation probabilities P(Xi 6= 0), defined by

P(Xi 6= 0) =
∑

m∈M

π(m|Y ) mi ,

can be computed.

Error:

E =

P
∑

i=1

∣

∣

∣

∣

∣

P(Xi 6= 0)− 1

Nit

Nit+B
∑

n=B

1Xn

i
6=0

∣

∣

∣

∣

∣

.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Comparison of the thresholding operators:
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50
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Figure : (left) Evolution of the mean estimation error of the activation
probabilities for block-STMALA as a function of the number of
iterations, when Ψ = Ψ1 (Prox), Ψ = Ψ2 (HT) and Ψ = Ψ3 (STVS) as
shrinkage-thresholding operator. (right) Evolution of the mean

acceptance rate.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data
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Figure : Evolution of the mean error for block-STMALA and RJMCMC
as a function of the number of iterations (left) and the associated

boxplots (right).
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Toy example
A sparse spike and slab model
Regression for spectroscopy data
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Figure : Empirical autocorrelation function of X1 and X8 of
block-STMALA and RJMCMC.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data
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Figure : (left) Evolution of the mean estimators (over 100 independent
runs) of

∫

xi π(x |Y )dν(x) for i = 1 and i = 8 computed by
block-STMALA and RJMCMC as a function of the number of iterations.
(right) Associated boxplots.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data

Model for the observations Y ∈ R
N :

Y = GX + E .

Spike and slab prior:

(Xk |m, ϑ1, · · · , ϑP) ∼
{

δ0(Xk) if mk = 0,
N (0, 1/ϑk) if mk = 1.

(ϑℓ)1≤ℓ≤P are i.i.d. with Gamma distribution Ga (a, aK ),
where a = 2, K = 0.08.

The components of m ∈ M are i.i.d. Bernoulli with parameter
ω⋆ = 0.1.
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A sparse spike and slab model
Regression for spectroscopy data

Here,

N = 100, P = 200.

(G;,i)1≤i≤P are Gaussian with E[G·i ] = 0 and
E[GjiGki ] = 0.3|j−k|.

The nonzero coefficients of X are such that, for all
k ∈ {1, 2, 3, 4} and all j ∈ {1, 2, 3, 4, 5},
X50∗(k−1)+j = (−1)k+1 j1/k .

The design parameters are chosen so that STMALA and RJMCMC
have similar acceptance rates.
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A sparse spike and slab model
Regression for spectroscopy data
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Figure : Regression vectors estimated by block-STMALA and
RJMCMC.
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Toy example
A sparse spike and slab model
Regression for spectroscopy data
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Figure : Evolution of the mean number of active components for
STMALA and RJMCMC.
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Figure : Emitted signal GX̂ estimated by block-STMALA and RJMCMC
versus actual emitted signal GX .
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The dataset:

Y : fat content of 70 different cookies.
G : each row of G contains P = 300 spectroscopy

measurements.

The dataset is cut in a training set of N = 39 cookies and a
test set of 31 cookies.

Goal: predict fat content.

A spike is expected at 1726 nm (fat absorbance region).
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Figure : Boxplots of the 100 independent values of the components of

the regression vectors estimated by block-STMALA and RJMCMC
associated to 9 wavelengths close to 1726 nm.

Amandine Schreck STMALA for Sparse Regression



Introduction
Specification of the motivating problem

The STMALA
Illustration

Future directions

Toy example
A sparse spike and slab model
Regression for spectroscopy data

0 0.5 1 1.5 2

x 10
6

10
−0.1

10
0

10
0.1

10
0.2

mean test error

 

 

STMALA
RJMCMC

Figure : Evolution of the mean MSE (over 100 independent trajectories)
on the test data set for RJMCMC and block-STMALA.
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Future directions

tempering (to deal with multimodality)

adaptation (automatic choice of design parameters)

real data (back to brain imaging)...
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Thank you !

A. Schreck, G. Fort, S. Le Corff and E. Moulines.

A shrinkage-thresholding Metropolis adjusted Langevin algorithm for
Bayesian variable selection.

on ArXiv, 2013.
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