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1 RKHS of vector-valued functions

1.1 Introduction
In our framework we deal with complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...) belonging to a set X. Kernel
methods is a collection of algorithms that study the more typical problems in machine
learning (clustering, ranking, classification, etc.), without doing any assumption regar-
ding the type of data.
The idea is to rely on a comparison or similarity function K : X × X → R and to
represent the set of data points S = {x1, . . . , xn} by the n × n matrix [K]i j = K(xi, x j).

Definition 1 A positive definite (p.d.) kernel on the set X is a function K : X×X → R
symmetric :

K
(
x, x′

)
= K

(
x′, x

)
, for all x, x′ ∈ X .

and which satisfies, for all N ∈ N, (x1, . . . , xN) ∈ XN and (a1, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aia jK
(
xi, x j

)
≥ 0 .

Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and any set of points
(x1, . . . , xN) ∈ XN , the similarity matrix [K]i j = K(xi, x j) is positive semidefinite.
Kernel methods are algorithm that take such matrices as input.

Example 1 (The linear kernel) Let X = Rd. The function K : X2 → R is defined by

K
(
x, x′

)
= 〈x, x′〉Rd , for all x, x′ ∈ X .

Lemma 1 Let X be any set and φ : X → Rd. The function K : X2 → R, defined by

K
(
x, x′

)
= 〈φ (x) , φ

(
x′
)
〉Rd , for all x, x′ ∈ X ,

is p.d.

Theorem 1.1 [1] K is a p.d. kernel on the set X if and only if there exists a Hilbert
spaceH and a mapping φ : X → H , such that, for any x, x′ ∈ X :

K
(
x, x′

)
= 〈φ (x) , φ

(
x′
)
〉H .
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1.1 Introduction 1 RKHS OF VECTOR-VALUED FUNCTIONS

Definition 2 Let X be a set andH ⊂ RX be a class of functions forming a real Hilbert
space with inner product 〈·, ·〉H . The function K : X2 → R is called a reproducing
kernel (r.k.) ofH if

(i) H contains all functions of the form Kx : y 7→ K(x, y), for all x ∈ H ,
(ii) For all x ∈ X and f ∈ H the reproducing property holds : f (x) = 〈 f ,Kx〉H .

If a such r.k. exists, thenH is called a reproducing kernel Hilbert space (RKHS).

Theorem 1.2 The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X, the
mapping Fx : H → R defined by Fx( f ) = f (x) is continuous.

Proof
Suppose thatH is a RKHS, then a r.k. K exists. For any x ∈ X, f ∈ H

| f (x)| = |〈 f ,Kx〉H | ≤ || f ||H ||Kx||H = || f ||H K1/2 (x, x) .

If the mapping Fx is continuous we have that Fx ∈ H
∗. Riesz representation theorem

implies that for any x ∈ X there exists gx ∈ H such that Fx = 〈·, gx〉H . The function
K(x, y) = gx(y) is a r.k. forH .

n

Theorem 1.3 IfH is a RKHS, the it has a unique r.k. and conversely, a function K can
be the r.k. of at most one RKHS.

Theorem 1.4 A function K : X2 → R is p.d. if and only if it is a r.k.

Theorem 1.5 (Representer Theorem) Let X be a set endowed with a p.d. kernel K,
HK the corresponding RKHS, and S = {x1, . . . , xn} a finite set of points in X. Let
Ψ : Rn+1 → R be a function of n + 1 variables, strictly increasing with respect to the
last variable. Then, any solution to the optimization problem :

min
f∈HK

Ψ
(

f (x1) , . . . , f (xn) , || f ||HK

)
admits a representation of the form :

f (x) =

n∑
i=1

αiK (xi, x)

Proof
ConsiderHSK , the linear span inHK of the vectors Kxi , i.e.,

HSK =

 f ∈ HK : f (x) =

n∑
i=1

αiK (xi, x) , (α1, . . . , αn) ∈ Rn

 .

HSK is a closed subspace ofHK , therefore any f ∈ HK can be uniquely decomposed as
f = fS + f⊥ where fS ∈ HSK and f⊥ ∈ (HSK )⊥.
SinceHK is a RKHS and for all i = 1, . . . , n, Kxi ∈ H

S
K , we have f⊥(xi) = 〈 f⊥,K(xi, ·)〉HK =

0. Hence, f (xi) = fS(xi). Note also that ‖ f ‖2
HK

= ‖ fS‖2HK
+ ‖ f⊥‖2HK

. These facts imply
that

Ψ
(

f (x1) , . . . , f (xn) , || f ||HK

)
≥ Ψ

(
fS (x1) , . . . , fS (xn) , || fS||HK

)
,

with equality if and only if f⊥ = 0. The optimum of Ψ belongs necessarily toHSK .

n
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1.2 Regression 1 RKHS OF VECTOR-VALUED FUNCTIONS

1.2 Regression
Given n pairs (x1, y1), . . . , (xn, yn) ∈ X × R, the regression problem consists in find a
function f : X → R to predict y by f (x). The prediction error is quantified by (y− f (x))2.
We need to fix a set of functionsH .
The least-square regression amounts to solve :

f̂ = arg min
f∈H

1
n

n∑
i=1

(yi − f (xi))2 .

But this problem is numerically unstable and the risk of overfitting is high in case of
largeH .
Take H = HK the RKHS associated to a p.d. kernel K on X. Let us regularize the
functional to be minimized as in the following

f̂ = arg min
f∈H

1
n

n∑
i=1

(yi − f (xi))2 + λ || f ||2
HK

 . (1)

We prevent overfitting by penalizing the non-smooth functions.

Theorem 1.6 The minimizing problem (1) admits a solution f̂ with the following ex-
pansion

f̂ (x) =

n∑
i=1

αiK (xi, x)

where α = [α1 . . . αn]′ satisfies α = (K + λnI)−1y, with K the Gram matrix (Ki j =

K(xi, x j)) y = [y1 . . . yn]′.

Proof
Observe that [ f̂ (x1) . . . f̂ (xn)]′ = Kα and that ‖ f̂ ‖2

HK
= α′Kα. The problem is equiva-

lent to

f̂ = arg min
α∈Rn

{
1
n

(Kα − y)′ (Kα − y) + λα′Kα
}
.

Since K is positive-semidefinite the expression between brackets is convex and diffe-
rentiable on α. Its minimum can be determined by setting the gradient to zero :

K
[
(K + λnI)α − y

]
= 0 .

We obtain then that (K + λnI)α − y ∈ ker(K). Because K + λnI is positive definite and
commutes with K we get the following chain of equivalences

(K + λnI)α − y ∈ ker (K)⇔
α − (K + λnI)−1 y ∈ ker (K)⇔

α = (K + λnI)−1 y + ε,with Kε = 0 .

Suppose that f and f ′ are generated by α and α′ such that α = α′ + ε with Kε = 0.
Then, ∣∣∣∣∣∣ f − f ′

∣∣∣∣∣∣2
HK

=
(
α − α′

)′ K
(
α − α′

)
= 0 .

Thus, one solution to the problem is given by the claimed expression with α = (K +

λnI)−1y.

n
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2 PROXIMAL METHODS

2 Proximal methods

2.1 Introduction
Proximal algorithms is a class of optimization algorithms, useful to solve convex, nons-
mooth, constrained and large-scale problems.

Definition 3 (Proximal operator) Let f : Rn → R ∪ {+∞} be a closed proper convex
function, which means that its epigraph

epi f = {(x, t) ∈ Rn × R : f (x) ≤ t} ,

is a nonempty closed convex set. The effective domain of f is

dom f = {x ∈ Rn : f (x) < +∞} , ∅ ,

i.e., the set of points for which f takes on finite values. The proximal operator prox f :
Rn → Rn of f is defined by

prox f (v) = arg min
x

{
f (x) +

1
2
||x − v||22

}
We will often encounter the proximal operator of the scaled function λ f , with parameter
λ > 0. It is

proxλ f (v) = arg min
x

{
f (x) +

1
2λ
||x − v||22

}
Evaluating prox f involves solving a convex optimization problem. This is done via
standard methods like BFGS (Broyden–Fletcher–Goldfarb–Shanno), but very often has
an analytical solution or simple specialized linear-time algorithm.

Example 2 Let IC an indicator function of a convex set, i.e.

IC (x) =

{
0 if x ∈ C
+∞ if x < C

The proximal operator of IC is the projection : proxλIC (v) = Π(v) = arg minx∈C ‖x−v‖2.

Example 3 Let f (x) = (1/2)x′Px + q′x + r, then proxλ f (v) = (I + λP)−1(v − λq)

Theorem 2.1 (Fixed point) The point x∗ minimizes f if and only if x∗ = prox f (x∗).

Proof
We assume for convenience that f is subdifferentiable on its domain, though the result
is true in general.
If x∗ minimizes f , i.e., then

f (x) +
1
2
||x − x∗||22 ≥ f (x∗) = f (x∗) +

1
2
||x∗ − x∗||22

Therefore, x∗ also minimizes f (x) + (1/2)‖x − x∗‖22.
Suppose now that x∗ minimizes f (x) + (1/2)‖x− x∗‖22. Using the subdifferential charac-
terization of the function we get that 0 ∈ ∂ f (x∗) where

∂ f (x) =
{
y : f (z) ≥ f (x) + y′ (z − x) ,∀z ∈ dom f

}
,

and then x∗ also minimizes f .
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n

Lemma 2 The following properties hold

(i) Separable sum : if f is block separable, so f (x) =
∑N

i=1 f (xi) then (prox f (v))i =

prox fi (vi), for i = 1, . . . ,N. This is the key to parallel / distributed proximal
algorithms.

(ii) Post composition : let f , φ : Rn → R and (a, b) ∈ R+ × R. If f (x) = aφ(x) + b
then proxλ f (v) = proxaλφ(v).

(iii) Pre composition : let f , φ : Rn → R and (a, b) ∈ R∗ ×R. If f (x) = φ(ax + b) then
proxλ f (v) = (1/a)(proxanλφ(av + b) − b).

(iv) Affine addition : let f , φ : Rn → R and (a, b) ∈ Rn × R. If f (x) = φ(x) + a′x + b
then proxλ f (v) = proxλφ(v − λa).

Definition 4 Let α ∈ (0, 1). An operator T : domT = D→ D is nonexpansive if for all
x, y ∈ D

||T x − Ty|| ≤ ||x − y|| ,

and α-averaged if T = (1 − α)Id + αR for some nonexpansive operator R : domR =

D → D. The class of α-averaged operators on D is denoted by A(α). In particular,
A(1/2) is the class of firmly nonexpansive operators.

Lemma 3 prox f is firmly nonexpansive.

Lemma 4 [3, Lemma 2.3] Suppose that B : D → D and β ∈ (0,+∞) satisfy βB ∈
A(1/2), and let γ ∈ (0, 2β). Then, I − γB ∈ A(γ/(2β)).

Theorem 2.2 (Krasnosel’skiĭ–Mann algorithm) [2, Theorem 5.14] Let D be a no-
nempty closed convex subset of H, let R : D → D be a nonexpansive operator such
that FixR , ∅, let (λn)n∈N be a sequence in [0, 1] such that

∑
n∈N λn(1 − λn) = +∞, and

let x0 ∈ D. Set, for all n ∈ N

xn+1 = (1 − λn) xn + λnRxn .

Then the following hold :

(i) (xn)n∈N is Fejér monotone with respect to FixR, i.e., for all x ∈ R and n ∈ N,
‖xn+1 − x‖ ≤ ‖xn − x‖.

(ii) (T xn − xn)n∈N converges strongly to 0.

(iii) (xn)n∈N converges weakly to a point in FixR.

2.2 Proximal methods
Theorem 2.3 (Proximal minimization algorithm convergence) Assume that arg min f ,
∅. The proximal minimization algorithm, defined iteratively by

x(0) ∈ Rn ,

x(k+1) = prox f

(
x(k)

)
,

converges.
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Consider now the problem

min { f (x) + g (x)} ,

where f : Rn → R and g : Rn → R ∪ {+∞}, f is differentiable and g possibly
nonsmooth.

Theorem 2.4 (Proximal gradient algorithm convergence) Assume that∇ f is Lipschitz
continuous with constant L. The proximal gradient algorithm, defined iteratively by

x(0) ∈ Rn ,

x(k+1) = proxλ(k)g

(
x(k) − λ(k)∇ f

(
x(k)

))
,

converges if λ(k) = λ ∈ (0, 1/L).

Proof (Sketch)
A point x∗ minimizes f + g if and only if

0 ∈ ∇ f (x∗) + ∂g (x∗)

If and only if, for any λ > 0 the following equivalent statement hold :

0 ∈ λ∇ f (x∗) + λ∂g (x∗)

0 ∈ λ∇ f (x∗) − x∗ + x∗ + λ∂g (x∗)
(I − λ∇ f ) (x∗) ∈ (I + λ∂g) (x∗)

x∗ ∈ (I + λ∂g)−1 (I − λ∇ f ) (x∗)

x∗ = proxλg (x∗ − λ∇ f (x∗))

The operator (I + λ∂g)−1 (I − λ∇ f ) is averaged as composition of averaged operators
[3, Lemma 2.2].

n

Theorem 2.5 (Accelerated proximal gradient algorithm convergence) Assume that
∇ f is Lipschitz continuous with constant L. The accelerated proximal gradient algo-
rithm, defined iteratively by

x(0) ∈ Rn, ω(0) = 0 ,
y(k+1) = x(k) + ω(k)

(
x(k) − x(k−1)

)
x(k+1) = proxλ(k)g

(
y(k+1) − λ(k)∇ f

(
y(k+1)

))
,

converges if λ(k) = λ ∈ (0, 1/L) and ω(k) = k/(k + 3).
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