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1 RKHS of vector-valued functions

1.1 Introduction

In our framework we deal with complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...) belonging to a set X. Kernel
methods is a collection of algorithms that study the more typical problems in machine
learning (clustering, ranking, classification, etc.), without doing any assumption regar-
ding the type of data.

The idea is to rely on a comparison or similarity function K : X X X — R and to
represent the set of data points S = {x1,..., x,} by the n X n matrix [K];; = K(x;, x;).

Definition 1 A positive definite (p.d.) kernel on the set X is a function K : X x X - R
symmetric :

K(x,x)=K(x',x), forallx,x € X .

and which satisfies, for all N € N, (x1,...,xy) € XY and (a1, ...,ay) € RV :

N N
ZZaiajK(xi,xj) >0.

Equivalently, a kernel K is p.d. if and only if, for any N € N and any set of points

(X1, ...,xy) € XV, the similarity matrix [K]; ; = K(x;, x;) is positive semidefinite.

Kernel methods are algorithm that take such matrices as input.

Example 1 (The linear kernel) Let X = R?. The function K : X* — R is defined by

K (x,x") = {(x, x")ga, forallx,x" € X .

Lemma 1 Let X be any set and ¢ : X — R%. The function K : X*> — R, defined by
K(x,x") ={p(x), ¢ (x'))ga, forall x,x" € X,

is p.d.

Theorem 1.1 [[I|] K is a p.d. kernel on the set X if and only if there exists a Hilbert
space H and a mapping ¢ : X — H, such that, for any x,x’ € X :

K (x,x") = (¢ (x), ¢ (X)) -
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Definition 2 Let X be a set and H c RX be a class of functions forming a real Hilbert
space with inner product {-,-)y. The function K : X*> — R is called a reproducing

kernel (r.k.) of H if

(i) H contains all functions of the form K, : y — K(x,y), for all x € ‘H,

(it) Forall x € X and f € H the reproducing property holds : f(x) = (f, K;)y.-
If a such rk. exists, then H is called a reproducing kernel Hilbert space (RKHS).

Theorem 1.2 The Hilbert space H < RX is a RKHS if and only if for any x € X, the
mapping F, : H — R defined by F.(f) = f (x) is continuous.

Proof
Suppose that H is a RKHS, then a r.k. K exists. For any x € X, f € H

If G = K Kl < fllg 1K llge = 1f 1l K (o 0)

If the mapping F, is continuous we have that F, € H*. Riesz representation theorem
implies that for any x € X there exists g, € H such that F, = (-, g,)#. The function
K(x,y) = g«(y)is ark. for H.

Theorem 1.3 [f H is a RKHS, the it has a unique r.k. and conversely, a function K can
be the r.k. of at most one RKHS.

Theorem 1.4 A function K : X*> — R is p.d. if and only if it is a rk.

Theorem 1.5 (Representer Theorem) Let X be a set endowed with a p.d. kernel K,
Hy the corresponding RKHS, and S = {xy,...,x,} a finite set of points in X. Let
¥ : R™! — R be a function of n + 1 variables, strictly increasing with respect to the
last variable. Then, any solution to the optimization problem :

min ‘i’(f(xl),...,f(xn),||f||«f{,(>

f€7'll(

admits a representation of the form :
n
fx)= Z%’K (xi, x)
i=1

Proof
Consider ?{;? the linear span in H of the vectors K, i.e.,

H = {fe‘HK:f(x) = > @K (xi, %), (@1, ) ER"} .
i=1

H ;? is a closed subspace of H, therefore any f € Hy can be uniquely decomposed as
f=fs+ f. where fs € Hy and f, € (H)*.
Since Hy isaRKHS and foralli = 1,...,n,K,, € 7-(1‘?, we have f (x;) = (fi, K(xi, )i, =
?h I;Ience, f(xi) = fs(x;). Note also that ||f||${K = ||f5||§{K + ||fL||${K. These facts imply

a

V(G f o) Nl ) = W (s e s () U sl )

with equality if and only if f, = 0. The optimum of ¥ belongs necessarily to 7{1“? .
|
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1.2 Regression

Given n pairs (x1,y1),..., (X, ¥n) € X X R, the regression problem consists in find a
function f : X — Rto predict y by f(x). The prediction error is quantified by (y—f(x)).
We need to fix a set of functions H.

The least-square regression amounts to solve :

1L
f=argmm;;(yi—f(xi))2 .

feH i

But this problem is numerically unstable and the risk of overfitting is high in case of
large H.

Take H = Hg the RKHS associated to a p.d. kernel K on X. Let us regularize the
functional to be minimized as in the following

7 aremind L S (v - £ o2 2
f—argmm{n;(y, £ +A|IfII(HK}. (1)

feH
We prevent overfitting by penalizing the non-smooth functions.

Theorem 1.6 The minimizing problem admits a solution fwith the following ex-
pansion

f= Z ;K (xi, x)
i=1
where @ = [ ... a,] satisfies @ = (K + AnD)™'y, with K the Gram matrix (Kij =
K(xi,xj) y =y ... yal’.
Proof

Observe that [ﬁxl) . f(x,,)]’ = Ka and that ||]?||(2HK = &'Ka. The problem is equiva-
lent to
- 1
f = argmin {— (Ka-y) (Ka—-y)+ /lo/Ka'} .
aeRn n
Since K is positive-semidefinite the expression between brackets is convex and diffe-
rentiable on . Its minimum can be determined by setting the gradient to zero :
K[(K+AanDha-y]=0.

We obtain then that (K + Anl)a — y € ker(K). Because K + Anl is positive definite and
commutes with K we get the following chain of equivalences
(K+Aan)a -y ecker(K) &
a—(K+ Ay eker(K)
a=(K +/ln1)_1y +e,withKe=0.
Suppose that f and f” are generated by @ and @’ such that @ = @’ + € with Ke = 0.

Then,
12
“f -f Hy
Thus, one solution to the problem is given by the claimed expression with @ = (K +
Anl)'y.

=(@e-a)K(@-a)=0.
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2 Proximal methods

2.1 Introduction

Proximal algorithms is a class of optimization algorithms, useful to solve convex, nons-
mooth, constrained and large-scale problems.

Definition 3 (Proximal operator) Let f : R" — R U {+00} be a closed proper convex
function, which means that its epigraph

epif ={(x,) eR"XR: f(x) <1},
is a nonempty closed convex set. The effective domain of f is
domf ={xeR": f(x) <+oo}#0,
i.e., the set of points for which f takes on finite values. The proximal operator prox; :

R" — R" of f is defined by

1
prox; (v) = arg;nin {f(x) + 5 [lx — V||§}

We will often encounter the proximal operator of the scaled function Af, with parameter
A>0.1tis

. 1
prox,; (v) = argmin {f(x) byl v||§}

Evaluating prox, involves solving a convex optimization problem. This is done via
standard methods like BFGS (Broyden—Fletcher—Goldfarb—Shanno), but very often has
an analytical solution or simple specialized linear-time algorithm.

Example 2 Let I an indicator function of a convex set, i.e.

0 ifxeC
IC(X):{ +oo ifx¢C

The proximal operator of I¢ is the projection : prox,, (v) = II(v) = arg min . ||x - v|l>.
Example 3 Ler f(x) = (1/2)x'Px + q'x + r, then prox,,(v) = (I + AP '(v - A9)
Theorem 2.1 (Fixed point) The point x* minimizes f if and only if x* = prox (x*).

Proof

We assume for convenience that f is subdifferentiable on its domain, though the result
is true in general.

If x* minimizes f, i.e., then

1 1 .
F @)+l = B2 fO) = F()+ 5 - X3

Therefore, x* also minimizes f(x) + (1/2)[|x — x*ll%.
Suppose now that x* minimizes f(x)+(1/2)||x— x*ll%. Using the subdifferential charac-
terization of the function we get that 0 € Jf(x*) where

Of W ={y: f@=f(x)+y (z-x),¥z € domf} ,

and then x* also minimizes f.
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Lemma 2 The following properties hold

(i) Separable sum : if f is block separable, so f(x) = ZZ] f(x;) then (proxf(v))i =
prox,(v;), for i = 1,...,N. This is the key to parallel / distributed proximal
algorithms.

(ii) Post composition : let f,¢ : R" — R and (a,b) € Ry X R. If f(x) = ap(x) + b
then prox (V) = prox,,(v).

(iii) Pre composition : let f,¢ : R" — R and (a,b) € R* XR. If f(x) = ¢p(ax + b) then
prox,(v) = (1/a)(prox . 4(av + b) — b).

(iv) Affine addition : let f,¢ : R" — R and (a,b) € R" XR. If f(x) = ¢(x) +a’x + b
then prox lf(v) = prox,,(v — da).

Definition 4 Let a € (0, 1). An operator T : domT = D — D is nonexpansive if for all
x,y€D

ITx =Tyl < llx=yll ,

and a-averaged if T = (1 — a)ld + aR for some nonexpansive operator R : domR =
D — D. The class of a-averaged operators on D is denoted by A(a). In particular,
A(1/2) is the class of firmly nonexpansive operators.

Lemma 3 prox; is firmly nonexpansive.

Lemma 4 [3l Lemma 2.3] Suppose that B : D — D and 8 € (0, +c0) satisfy fB €
A(1/2), and let y € (0,2B). Then, I —yB € A(y/(28)).

Theorem 2.2 (Krasnosel’skif—Mann algorithm) [2| Theorem 5.14] Let D be a no-
nempty closed convex subset of H, let R : D — D be a nonexpansive operator such
that FixR # 0, let (,))uen be a sequence in [0, 1] such that Y, A,(1 — 4,,) = +00, and
let xo € D. Set, foralln e N

Xn+l = (1 - /111) X, + A Rx,

Then the following hold :

(i) (xXp)new is Fejér monotone with respect to FixR, i.e., for all x € R and n € N,
1Xn+1 = Xl < [l — x].

(ii) (Tx, — Xp)nenw converges strongly to 0.

(iii) (x,)nenw converges weakly to a point in FixR.

2.2 Proximal methods

Theorem 2.3 (Proximal minimization algorithm convergence) Assume that arg min f #
0. The proximal minimization algorithm, defined iteratively by

0 e R,

D= prox, (x(k)),

converges.
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Consider now the problem

min {f (x) + g (x)} ,

where f : R* — Rand g : R* —» R U {+0c0}, f is differentiable and g possibly
nonsmooth.

Theorem 2.4 (Proximal gradient algorithm convergence) Assume that Vf is Lipschitz
continuous with constant L. The proximal gradient algorithm, defined iteratively by

K@ e Rr",
KD Prox o, ( b — by f (x(m)) ,
converges if A0 = 1€ (0, 1/L).

Proof (Sketch)
A point x* minimizes f + g if and only if

0eVf(x")+dg(x")
If and only if, for any A > O the following equivalent statement hold :

0 € AVS(x")+ A0g(x")

0 € AVF(X") —x"+x"+1A9g(x")
(I=AVf)(x") € (I+29g)(x")
X e (I+09)7 ' -avf) (x)
X' = prox,, (x* —AVf(x")

The operator (I + 19g)™' (I — AVf) is averaged as composition of averaged operators
[3, Lemma 2.2].

Theorem 2.5 (Accelerated proximal gradient algorithm convergence) Assume that
V£ is Lipschitz continuous with constant L. The accelerated proximal gradient algo-
rithm, defined iteratively by

K9 e RLWP=0,
YD = g 0 (30— D)
NS - Prox o, (y(k+1) _ by (y(k+1))) ’

converges if A0 = 1 € (0,1/L) and w™® = k/(k + 3).
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