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Abstract

Devoted to multi-task learning and structured output learning, operator-
valued kernels provide a flexible tool to build vector-valued functions in the
context of Reproducing Kernel Hilbert Spaces. To scale up these methods,
we extend the celebrated Random Fourier Feature methodology to get an
approximation of operator-valued kernels. We propose a general principle
for Operator-valued Random Fourier Feature construction relying on a gen-
eralization of Bochner’s theorem for translation-invariant operator-valued
Mercer kernels. We prove the uniform convergence of the kernel approxi-
mation for bounded and unbounded operator random Fourier features using
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appropriate Bernstein matrix concentration inequality. An experimental
proof-of-concept shows the quality of the approximation and the efficiency
of the corresponding linear models on example datasets.

1 Introduction
Multi-task regression (Micchelli and Pontil, 2005), structured classification (Din-
uzzo et al., 2011), vector field learning (Baldassarre et al., 2012) and vector au-
toregression (Sindhwani et al., 2013; Lim et al., 2015) are all learning problems
that boil down to learning a vector while taking into account an appropriate out-
put structure. A p-dimensional vector-valued model can account for couplings
between the outputs for improved performance in comparison to p independent
scalar-valued models. In this paper we are interested in a general and flexible ap-
proach to efficiently implement and learn vector-valued functions, while allowing
couplings between the outputs. To achieve this goal, we turn to shallow architec-
tures, namely the product of a (nonlinear) feature matrix Φ̃(x) and a parameter
vector θ such that f̃(x) = Φ̃(x)∗θ, and combine two appealing methodologies:
Operator-Valued Kernel Regression and Random Fourier Features.

Operator-Valued Kernels (Micchelli and Pontil, 2005; Carmeli et al., 2010; Ál-
varez et al., 2012) extend the classic scalar-valued kernels to vector-valued func-
tions. As in the scalar case, operator-valued kernels (OVKs) are used to build
Reproducing Kernel Hilbert Spaces (RKHS) in which representer theorems ap-
ply as for ridge regression or other appropriate loss functional. In these cases,
learning a model in the RKHS boils down to learning a function of the form
f(x) =

∑n
i=1K(x, xi)αi where x1, . . . , xn are the training input data and each

αi, i = 1, . . . , n is a vector of the output space Y and each K(x, xi), an opera-
tor on vectors of Y . However, OVKs suffer from the same drawback as classic
kernel machines: they scale poorly to very large datasets because they are very
demanding in terms of memory and computation. Therefore, focusing on the case
Y = Rp, we propose to approximate OVKs by extending a methodology called
Random Fourier Features (RFFs) (Rahimi and Recht, 2007; Le et al., 2013; Yang
et al., 2014; Sriperumbudur and Szabo, 2015; Bach, 2015; Sutherland and Schnei-
der, 2015) so far developed to speed up scalar-valued kernel machines. The RFF
approach linearizes a shift-invariant kernel model by generating explicitly an ap-
proximated feature map φ̃. RFFs has been shown to be efficient on large datasets
and further improved by efficient matrix computations of FastFood (Le et al.,
2013), and is considered as one of the best large scale implementations of kernel
methods, along with Nÿstrom approaches (Yang et al., 2012).

In this paper, we propose general Random Fourier Features for functions in
vector-valued RKHS. Here are our contributions: (1) we define a general form of
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Operator Random Fourier Feature (ORFF) map for shift-invariant operator-valued
kernels, (2) we construct explicit operator feature maps for a simple bounded
kernel, the decomposable kernel, and more complex unbounded kernels curl-free
and divergence-free kernels, (3) the corresponding kernel approximation is shown
to uniformly converge towards the target kernel using appropriate Bernstein matrix
concentration inequality, for both bounded and unbounded operator-valued kernels
and (4) we illustrate the theoretical approach by a few numerical results.

The paper is organized as follows. In section 1.2, we recall Random Fourier
Feature and Operator-valued kernels. In section 2, we use extension of Bochner’s
theorem to propose a general principle of Operator Random Fourier Features and
provide examples for decomposable, curl-free and divergence-free kernels. In sec-
tion 3, we present a theorem of uniform convergence for bounded and unbounded
ORFFs (proof is given in appendix B) and the conditions of its application. Sec-
tion 4 shows an numerical illustration on learning linear ORFF-models. Section 5
concludes the paper. The main proofs of the paper are presented in Appendix.

1.1 Notations
The euclidean inner product in Rd is denoted 〈·, ·〉 and the euclidean norm is
denoted ‖·‖. The unit pure imaginary number

√
−1 is denoted i. For a function

f : Rd → R, if dx is the Lebesgue measure on Rd, we denote F [f ] its Fourier
transform defined by:

∀x ∈ Rd,F [f ] (x) =

∫
Rd

e−i〈ω,x〉f(ω)dω.

The inverse Fourier transform of a function g is defined as

F−1 [g] (ω) =

∫
Rd

ei〈x,ω〉f(ω)dx.

It is common to define the Fourier transform of a (positive) measure µ by

F [µ] (x) =

∫
Rd

e−i〈ω,x〉dµ(ω).

If X and Y are two vector spaces, we denote by F(X ;Y) the vector space of
functions f : X → Y and C(X ;Y) ⊂ F(X ;Y) the subspace of continuous functions.
If H is an Hilbert space we denote its scalar product by 〈., .〉H and its norm by
‖.‖H. We set L(H) = L(H;H) to be the space of linear operators from H to itself.
If W ∈ B(H), Ker W denotes the nullspace, Im W the image and W ∗ ∈ B(H) the
adjoint operator (transpose in the real case).
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1.2 Background
Random Fourier Features: we first consider scalar-valued functions. Denote
k : Rd × Rd → R a positive definite kernel on Rd. A kernel k is said to be shift-
invariant for the addition if for any a ∈ Rd, ∀(x, x′) ∈ Rd × Rd, k(x− a, z − a) =
k(x, z). Then, we define k0 : Rd → R the function such that k(x, z) = k0(x − z).
k0 is called the signature of kernel k. Bochner theorem is the theoretical result
that leads to the Random Fourier Features.

Theorem 1.1 (Bochner’s theorem1). Every positive definite complex valued func-
tion is the Fourier transform of a non-negative measure. This implies that any
positive definite, continuous and shift-invariant kernel k is the Fourier transform
of a non-negative measure µ:

k(x, z) = k0(x− z) =

∫
Rd

e−i〈ω,x−z〉dµ(ω). (1)

Without loss of generality for the Random Fourier methodology, we assume
that µ is a probability measure, i.e.

∫
Rd dµ(ω) = 1. Then we can write eq. (1) as

an expectation over µ: k0(x− z) = Eµ
[
e−i〈ω,x−z〉

]
. Both k and µ are real-valued,

and the imaginary part is null if and only if µ(ω) = µ(−ω). We thus only write
the real part:

k(x, z) = Eµ[cos〈ω, x− z〉]
= Eµ [cos〈ω, z〉 cos〈ω, x〉+ sin〈ω, z〉 sin〈ω, x〉] .

Let
⊕D

j=1 xj denote the Dm-length column vector obtained by stacking vectors
xj ∈ Rm. The feature map φ̃ : Rd → R2D defined as

φ̃(x) =
1√
D

D⊕
j=1

(
cos 〈x, ωj〉
sin 〈x, ωj〉

)
, ωj ∼ µ (2)

is called a Random Fourier Feature map. Each ωj, j = 1, . . . , D is independently
sampled from the inverse Fourier transform µ of k0. This Random Fourier Feature
map provides the following Monte-Carlo estimator of the kernel:

K̃(x, z) = φ̃(x)∗φ̃(z), (3)

that is proven to uniformly converge towards the true kernel described in eq. (1).
The dimension D governs the precision of this approximation whose uniform con-
vergence towards the target kernel can be found in Rahimi and Recht (2007) and

1See Rudin (1994).
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in more recent papers with some refinements Sutherland and Schneider (2015);
Sriperumbudur and Szabo (2015). Finally, it is important to notice that Random
Fourier Feature approach only requires two steps before learning: (1) define the
inverse Fourier transform of the given shift-invariant kernel, (2) compute the ran-
domized feature map using the spectral distribution µ. For the Gaussian kernel
k(x − z) = exp(−γ‖x− z‖2), the spectral distribution µ(ω) is Gaussian Rahimi
and Recht (2007).

Operator-valued kernels: we now turn to vector-valued functions and consider
vector-valued Reproducing Kernel Hilbert spaces (vv-RKHS) theory. The def-
initions are given for input space X ⊂ Cd and output space Y ⊂ Cp. We will
define operator-valued kernel as reproducing kernels following the presentation of
Carmeli et al. (2010). Given X and Y , a map K : X × X → L(Y) is called a
Y-reproducing kernel if

N∑
i,j=1

〈K(xi, xj)yj, yi〉 ≥ 0,

for all x1, . . . , xN in X , all y1, . . . , yN in Y and N ≥ 1. Given x ∈ X , Kx : Y →
F(X ;Y) denotes the linear operator whose action on a vector y is the function
Kxy ∈ F(X ;Y) defined by (Kxy)(z) = K(z, x)y, ∀z ∈ X .

Additionally, given a Y-reproducing kernel K, there is a unique Hilbert space
HK ⊂ F(X ;Y) satisfying Kx ∈ L(Y ;HK), ∀x ∈ X and f(x) = K∗

xf, ∀x ∈
X , ∀f ∈ HK , where K∗

x : HK → Y is the adjoint of Kx. The space HK is called
the (vector-valued) Reproducing Kernel Hilbert Space associated with K. The
corresponding product and norm are denoted by 〈., .〉K and ‖.‖K , respectively. As
a consequence (Carmeli et al., 2010) we have:

K(x, z) = K∗
xK

∗
z ∀x, z ∈ X

HK = span {Kxy | ∀x ∈ X , ∀y ∈ Y}

Another way to describe functions of HK consists in using a suitable feature map.

Proposition 1.1 (Carmeli et al. (2010)). Let H be a Hilbert space and Φ : X →
B(Y ;H), with Φx , Φ(x). Then the operator W : H → F(X ;Y) defined by
(Wg)(x) = Φ∗

xg, ∀g ∈ H, ∀x ∈ X is a partial isometry from H onto the reproduc-
ing kernel Hilbert space HK with reproducing kernel

K(x, z) = Φ∗
xΦz, ∀x, z ∈ X .

W ∗W is the orthogonal projection onto

Ker W⊥ = span {Φxy | ∀x ∈ X , ∀y ∈ Y} .

Then ‖f‖K = inf {‖g‖H | ∀g ∈ H, Wg = f}.
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We call Φ a feature map, W a feature operator and H a feature space. When
Y = Rp and X = Rd a case of interest is to define an operator W : Rm → F(Rd;Rp)
such that: ∀x ∈ Rd and θ ∈ Rm, (Wθ)(x) = Φ(x)∗θ and K(x, z) = Φ∗

xΦz, ∀x, z ∈
Rd. Then Φ(x) is a rectangular matrix of size m×p and the function Φ is a feature
map.

In this paper, we are interested on finding feature maps of this form for shift-
invariant Rp-Mercer kernels using the following definitions. A reproducing kernel
K on Rd is a Rp-Mercer provided that HK is a subspace of C(Rd;Rp). It is said
to be a shift-invariant kernel or a translation-invariant kernel for the addition
if K(x + a, z + a) = K(x, z), ∀(x, z, a) ∈ X 3. It is characterized by a function
K0 : X → L(Y) of completely positive type such that K(x, z) = K0(δ), with
δ = x− z.

2 Operator-valued Random Fourier Features

2.1 Spectral representation of shift-invariant vector-valued
Mercer kernels

The goal of this work is to build approximated matrix-valued feature map for shift-
invariant Rp-Mercer kernels, denoted with K, such that any function f ∈ HK can
be approximated by a function f̃ defined by:

f̃(x) = Φ̃(x)∗θ

where Φ(x) is a real matrix of size (m× p) and θ is an m-dimensional vector. We
propose a randomized approximation of such a feature map using a generalization
of the Bochner theorem for operator-valued functions. For this purpose, we build
upon the work of Carmeli et al. (2010) that introduced the Fourier representation of
shift-invariant Operator-Valued Mercer Kernels on locally compact Abelian groups
X using the general framework of Pontryagin duality (see for instance Folland
(1994)). In a few words, Pontryagin duality deals with functions on locally compact
Abelian groups, and allows to define their Fourier transform in a very general way.
For sake of simplicity, we instantiate the general results of Carmeli et al. (2010);
Zhang et al. (2012) for our case of interest of X = Rd and Y = Rp. The following
proposition extends Bochner’s theorem to any shift-invariant Rp-Mercer kernel.

Proposition 2.1 (Operator-valued Bochner’s theorem2). A continuous function
K from Rd × Rd to L(Rp) is a shift-invariant reproducing kernel if and only
if ∀x, z ∈ Rd, it is the Fourier transform of a positive operator-valued measure

2Equation (36) in Zhang et al. (2012).
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M : Rp → L+(Rp):
K(x, z) =

∫
Rd

e−i〈x−z,ω〉dM(ω),

where M belongs to the set of all the L+(Rp)-valued measures of bounded variation
on the σ-algebra of Borel subsets of Rd.

However it is much more convenient to use a more explicit result that involves
real-valued (positive) measures. The following proposition instantiates Prop. 13
in Carmeli et al. (2010) to matrix-valued operators.

Proposition 2.2 (Carmeli et al. (2010)). Let µ be a positive measure on Rd and
A : Rd → L(Rp) such that 〈A(.)y, y′〉 ∈ L1(Rd, dµ) for all y, y′ ∈ Rp and A(ω) ≥ 0
for µ-almost all ω. Then, for all δ ∈ Rd, ∀`,m ∈ {1, . . . , p},

K0(δ)`m =

∫
Rd

e−i〈δ,ω〉A(ω)`mdµ(ω) (4)

is the kernel signature of a shift-invariant Rp-Mercer kernel K such that K(x, z) =
K0(x− z). In other terms, each real-valued function K0(·)`m is the Fourier trans-
form of A(·)`mpµ(·) where pµ(ω) = dµ

dω
is the Radon-Nikodym derivative of the

measure µ, which is also called the density of the measure µ. Any shift-invariant
kernel is of the above form for some pair (A(ω), µ(ω)).

This theorem is proved in Carmeli et al. (2010). When p = 1 one can always
assume A is reduced to the scalar 1, µ is still a bounded positive measure and
we retrieve the Bochner theorem applied to the scalar case (theorem 1.1). Now
we introduce the following proposition that directly is a direct consequence of
proposition 2.2.

Proposition 2.3 (Feature map). Given the conditions of proposition 2.2, we define
B(ω) such that A(ω) = B(ω)B(ω)∗. Then the function Φ : Rd → L(Rp) defined
by: ∀x ∈ Rp, for all `,m ∈ {1, . . . , p},

Φ(x)`m =

∫
Rd

e−i〈δ,ω〉B(ω)`mdµ(ω), (5)

is a feature map of the shift-invariant kernel K, i.e. it satisfies for all x, z in Rd,
Φ(x)∗Φ(z) = K(x, z).

The proof is straightforward by considering each coefficient (φ(x)∗φ(z))`m,
∀`,m ∈ {1, . . . , p}. Thus, to define an approximation of a given operator-valued
kernel, we need an inversion theorem that provides an explicit construction of the
pair A(ω), µ(ω) from the kernel signature. Proposition 14 in Carmeli et al. (2010),
instantiated to Rp-Mercer kernel gives the solution.
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Proposition 2.4 (Carmeli et al. (2010)). Let K be a shift-invariant Rp-Mercer
kernel. Suppose that ∀z ∈ Rd, ∀y, y′ ∈ Rp, 〈K0(.)y, y

′〉 ∈ L1(Rd, dx) where dx
denotes the Lebesgue measure. Define C : Rd → L(Rp) such that ∀ω ∈ Rd,∀`,m ∈
{1, . . . , p},

C(ω)`m =

∫
Rd

ei〈δ,ω〉K0(δ)`mdδ. (6)

Then

i) C(ω) is an non-negative matrix for all ω ∈ Rd,

ii) 〈C(.)y, y′〉 ∈ L1(Rd, dω) for all y, y′ ∈ Rp,

iii) for all δ ∈ Rd,∀`,m ∈ {1, . . . , p},

K0(δ)`m =

∫
Rd

e−i〈δ,ω〉C(ω)`mdω.

From eq. (4) and eq. (6), we can write the following equality concerning the
matrix-valued kernel signature K0, coefficient by coefficient: ∀δ ∈ Rd,∀i, j ∈
{1, . . . , p}, ∫

Rd

e−i〈δ,ω〉C(ω)ijdω =

∫
Rd

e−i〈δ,ω〉A(ω)ijdµ(ω).

We then conclude that the following equality holds almost everywhere for ω ∈ Rd:
C(ω)ij = A(ω)ijpµ(ω) where pµ(ω) = dµ

dω
. Without loss of generality we assume

that
∫
Rd dµ(ω) = 1 and thus, µ is a probability distribution. Note that this is

always possible through an appropriate normalization of the kernel. Then pµ is
the density of µ. The proposition 2.2 thus results in an expectation:

K0(x− z) = Eµ[e−i〈x−z,ω〉A(ω)] (7)

2.2 Construction of Operator Random Fourier Feature
Given a Rp-Mercer shift-invariant kernel K on Rd, we build an Operator-Valued
Random Fourier Feature (ORFF) map in three steps:

1) compute C : Rd → L(Rp) from eq. (6) by using the inverse Fourier transform
(in the sense of proposition 2.4) of K0, the signature of K;

2) find A(ω), pµ(ω) and compute B(ω) such that A(ω) = B(ω)B(ω)∗;

3) build an randomized feature map via Monte-Carlo sampling from the prob-
ability measure µ and the application B.
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2.3 Monte-Carlo estimator of OVKs
Let

⊕D
j=1Xj denote the block matrix of size rD×s obtained by stackingD matrices

X1, . . . , XD of size r × s. Assuming steps 1 and 2 have been performed, for all
j = 1, . . . , n, we find a decomposition A(ωj) = B(ωj)B(ωj)

∗ either by exhibiting a
general analytical closed-form or using a numerical decomposition. Denote p× p′

the dimension of the matrix B(ω). We then propose a randomized matrix-valued
feature map: ∀x ∈ Rd

Φ̃(x) =
1√
D

D⊕
j=1

e−i〈x,ωj〉B(ωj)
∗, ωj ∼ µ. (8)

The corresponding approximation for the kernel is then: ∀x, z ∈ Rd

K̃(x, z) = Φ̃(x)∗Φ̃(z)

=
1

D

∑D

j=1
e−i〈x,ωj〉B(ωj)e

i〈z,ωj〉B(ωj)
∗

=
1

D

∑D

j=1
e−i〈x−z,ωj〉A(ωj).

The Monte-Carlo estimator Φ̃(x)∗Φ̃(z) converges in probability to K(x, z) when
D tends to infinity. Namely,

K̃(x, z) = Φ̃(x)∗Φ̃(z)
p.−−−→

D→∞
Eµ
[
e−i〈x−z,ω〉A(ω)

]
= K(x, z)

As for the scalar-valued kernel, a real-valued matrix-valued function has a real
matrix-valued Fourier transform if A(ω) is even with respect to ω. Taking this
point into account, we define the feature map of a real matrix-valued kernel as

Φ̃(x) =
1√
D

D⊕
j=1

(
cos 〈x, ωj〉B(ωj)
sin 〈x, ωj〉B(ωj)

)
, ωj ∼ µ.

The kernel approximation becomes

Φ̃(x)∗Φ̃(z) =
1

D

D∑
j=1

cos 〈x,ωj〉 cos 〈z,ωj〉A(ωj)
sin 〈x,ωj〉 sin 〈z,ωj〉A(ωj)

+

=
1

D

D∑
j=1

cos 〈x− z, ωj〉A(ωj).

In the following, we give an explicit construction of ORFFs for three well-known Rp-
Mercer and shift-invariant kernels: the decomposable kernel introduced in Micchelli
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and Pontil (2005) for multi-task regression and the curl-free and the divergence-
free kernels studied in Macedo and Castro (2008); Baldassarre et al. (2012) for
vector field learning. All these kernels are defined using a scalar-valued shift-
invariant Mercer kernel k : Rd × Rd → R whose signature is denoted k0. A usual
choice is to choose k as a Gaussian kernel with k0(δ) = exp

(
−‖δ‖2

2σ2

)
, which gives

µ = N (0, σ−2I) (Huang et al., 2013) as its inverse Fourier transform.

Definition 2.1 (Decomposable kernel). Let A be a (p × p) positive semi-definite
matrix. K defined as ∀(x, z) ∈ Rd × Rd, K(x, z) = k(x, z)A is a Rp-Mercer shift-
invariant reproducing kernel.

Matrix A encodes the relationships between the outputs coordinates. If a graph
coding for the proximity between tasks is known, then it is shown in Evgeniou et al.
(2005); Baldassarre et al. (2010) that A can be chosen equal to the pseudo inverse
L† of the graph Laplacian, and then the `2 norm in HK is a graph-regularizing
penalty for the outputs (tasks). When no prior knowledge is available, A can be
set to the empirical covariance of the output training data or learned with one of
the algorithms proposed in the literature (Dinuzzo et al., 2011; Sindhwani et al.,
2013; Lim et al., 2015). Another interesting property of the decomposable kernel is
its universality. A reproducing kernel K is said universal if the associated RKHS
HK is dense in the space C(X ,Y).

Example 2.1 (ORFF for decomposable kernel).

Cdec(ω)`m =

∫
X
ei〈δ,ω〉k0(δ)A`mdδ = A`mF−1 [k0] (ω)

Hence, Adec(ω) = A and pdecµ (ω) = F−1 [k0] (ω).

ORFF for curl-free and div-free kernels: Curl-free and divergence-free ker-
nels provide an interesting application of operator-valued kernels (Macedo and
Castro, 2008; Baldassarre et al., 2012; Micheli and Glaunes, 2013) to vector field
learning, for which input and output spaces have the same dimensions (d = p). Ap-
plications cover shape deformation analysis (Micheli and Glaunes, 2013) and mag-
netic fields approximations (Wahlström et al., 2013). These kernels discussed in
Fuselier (2006) allow encoding input-dependent similarities between vector-fields.

Definition 2.2 (Curl-free and Div-free kernel). We have d = p. The divergence-
free kernel is defined as

Kdiv(x, z) = Kdiv
0 (δ) = (∇∇∗ −∆I)k0(δ)
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and the curl-free kernel as

Kcurl(x, z) = Kcurl
0 (δ) = −∇∇∗k0(δ),

where ∇∇∗ is the Hessian operator and ∆ is the Laplacian operator.

Although taken separately these kernels are not universal, a convex combina-
tion of the curl-free and divergence-free kernels allows to learn any vector field
that satisfies the Helmholtz decomposition theorem (Macedo and Castro, 2008;
Baldassarre et al., 2012). For the divergence-free and curl-free kernel we use the
differentiation properties of the Fourier transform.

Example 2.2 (ORFF for curl-free kernel:). ∀`,m ∈ {1, . . . , p},

Cdiv(ω)`m = −F−1

[
∂

∂δ`

∂

∂δm
k0

]
(ω)

= ω`ωmF−1 [k0] (ω)

Hence, Acurl(ω) = ωω∗ and pcurlµ (ω) = F−1 [k0] (ω). We can obtain directly:
Bcurl(ω) = ω.

For the divergence-free kernel we first compute the Fourier transform of the
Laplacian of a scalar kernel using differentiation and linearity properties of the
Fourier transform. We denote δ{`=m} as the Kronecker delta which is 1 if ` = m
and zero otherwise.

Example 2.3 (ORFF for divergence-free kernel:).

Ccurl(ω)`m = F−1

[
∂

∂δ`

∂

∂δm
k0 − δ{`=m}∆k0

]
= F−1

[
∂

∂δ`

∂

∂δm
k0

]
− δ{`=m}F−1 [∆k0]

= (δ{`=m} − ω`ωm)‖ω‖22F
−1 [k0] ,

since

F−1 [∆k0(δ)] =

p∑
k=1

F−1

[
∂

∂δk
k0

]
= −‖ω‖22F

−1 [k0] .

Hence Adiv(ω) = I‖ω‖22 − ωω∗ and pdivµ (ω) = F−1 [k0] (ω). Here, Bdiv(ω) has to be
obtained by a numerical decomposition such as Cholesky or SVD.
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Figure 1: Empirical Approximation Error versus number of random features D
induced by the ORFF approximation for different operator-valued kernels
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3 Uniform error bound on ORFF approximation
We are now interested on measuring how close the approximation K̃(x, z) =
Φ̃(x)∗Φ̃(z) is close to the target kernel K(x, z) for any x, z in a compact set C.
If A is a real matrix, we denote ‖A‖2 its spectral norm, defined as the square root
of the largest eigenvalue of A. For x and z in some compact C ⊂ Rd, we consider:
F (x− z) = K̃(x, z)−K(x, z) and study how the uniform norm

‖F‖∞ = sup
x,z∈C

∥∥∥K̃(x, z)−K(x, z)
∥∥∥
2

(9)

behaves according to D. Figure 1 empirically shows convergence of three different
OVK approximations for x, z from the compact [−1, 1]4 using an increasing number
of sample points D. The log-log plot shows that all three kernels have the same
convergence rate, up to a multiplicative factor.

In order to bound the error with high probability, we turn to concentration
inequalities devoted to random matrices (Boucheron et al., 2013). In the case of
the decomposable kernel, the answer to that question can be directly obtained
as a consequence of the uniform convergence of RFFs in the scalar case obtained
by Rahimi and Recht (2007) and other authors (Sutherland and Schneider, 2015;
Sriperumbudur and Szabo, 2015) since in this case,∥∥∥K̃(x, z)−K(x, z)

∥∥∥
2
= ‖A‖2

∥∥∥k̃(x, z)− k(x, z)
∥∥∥

This theorem and its proof are presented in corollary A.1.1.
More interestingly, we propose a new bound for Operator Random Fourier Fea-

ture approximation in the general case. It relies on three main ideas: (i) Matrix
concentration inequality for random matrices has to be used instead of concen-
tration inequality for (scalar) random variables, (ii) Instead of using Hoeffding
inequality as in the scalar case (proof of Rahimi and Recht (2007)) but for matrix
concentration (Mackey et al., 2014) we use a refined inequality such as the Bern-
stein matrix inequality (Ahlswede and Winter, 2002; Boucheron et al., 2013; Tropp,
2012), also used for the scalar case in (Sutherland and Schneider, 2015), (iii) we
propose a general theorem valid for random matrices with bounded norms (case for
decomposable kernel ORFF approximation) as well as with unbounded norms (curl
and divergence-free kernels). For the latter, we notice that their norms behave as
subexponential random variables (Koltchinskii et al., 2013). Before introducing
the new theorem, we give the definition of the Orlicz norm and subexponential
random variables.

Definition 3.1 (Orlicz norm). We follow the definition given by Koltchinskii et al.
(2013). Let ψ : R+ → R+ be a non-decreasing convex function with ψ(0) = 0. For

13



a random variable X on a measured space (Ω, T (Ω), µ),

‖X‖ψ , inf {C > 0 | E[ψ (|X|/C)] ≤ 1} .

Here, the function ψ is chosen as ψ(u) = ψα(u) where ψα(u) , eu
α − 1. When

α = 1, a random variable with finite Orlicz norm is called a subexponential variable
because its tails decrease at least exponentially fast.

Theorem 3.1. Let C be a compact subset of Rd of diameter l. Let K be a
shift-invariant Rp-Mercer kernel on Rd, K0 its signature and pµ(·)A(·) the inverse
Fourier transform of the kernel’s signature (in the sense of proposition 2.4) where
pµ is the density of a probability measure µ considering appropriate normalization.
Let D be a positive integer and ω1, . . . , ωD, i.i.d. random vectors drawn according
to the probability law µ. For x, z ∈ C, we recall

K̃(x, z) =
D∑
j=1

cos〈x− z, ωj〉A(ωj).

We note for all j ∈ {1, . . . , D},

Fj(x− z) =
1

D

(
D∑
j=1

cos〈x− z, ωj〉A(ωj)−K(x, z)

)

and F (x − z) = K̃(x, z) −K(x, z). ‖F‖∞ denotes the infinite norm of F (x − z)
on the compact C as introduced in eq. (9). If one can define the following terms
(bD,m, σ

2
p) ∈ R3

+:

bD = sup
x,z∈C

D

∥∥∥∥∥Eµ
[

D∑
j=1

(Fj(x− z))2
]∥∥∥∥∥

2

,

m = 4

(
‖‖A(ω)‖2‖ψ1

+ sup
x,z∈C

‖K(x, z)‖
)
, ω ∼ µ,

σ2
p = Eµ

[
‖ω‖22‖A(ω)‖

2
2

]
.

Then for all ε in R+,

P {‖F‖∞ ≥ ε} ≤ Cd

(
σpl

ε

) 2
1+2/d


exp

(
− ε2D

8(d+2)
(
bD+

εūD
6

)
)

if ūD ≤ 2(e−1)bD
ε

exp
(
− εD

(d+2)(e−1)ūD

)
otherwise,

where ūD = 2m log
(
2

3
2

(
m
bD

)2)
and Cd = p

((
d
2

) −d
d+2 +

(
d
2

) 2
d+2

)
2

6d+2
d+2 .
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We detail the proof of the theorem in appendix B. It follows the usual scheme
derived in Rahimi and Recht (2007) and Sutherland and Schneider (2015) and in-
volves Bernstein concentration inequality for unbounded symmetric matrices (the-
orem B.1).

3.1 Application to some operator-valued kernel
To apply theorem 3.1 to operator-valued kernels, we need to ensure that all the
constants exist. In the following, we first show how to bound the constant term
bD. Then we exhibit the upper bounds for the three operator-valued kernels we
took as examples. Eventually, we ensure that the random variable ‖A(ω)‖ has a
finite Orlicz norm with ψ = ψ1 in these three cases.

Bounding the term bD(δ):

Proposition 3.1. Define the matrix Vµ[A(ω)] as follows: for all `,m ∈ {1, . . . , p},

Vµ[A(ω)]`m =

p∑
r=1

Covµ[A(ω)`r, A(ω)rm]

For a given δ = x− z, define:

bD(δ) = D

∥∥∥∥∥Eµ
[

D∑
j=1

(Fj(δ))
2

]∥∥∥∥∥
2

.

Then we have:

bD(δ) ≤
1

2

∥∥(K0(2δ) +K0(0))Eµ[A(ω)]− 2K0(δ)
2
∥∥
2
+ ‖Vµ[A(ω)]‖2.

The proof uses trigonometry properties and various properties of the moments
and is given in appendix C. Now, we compute the upper bound given by proposi-
tion 3.1 for the three kernels we have taken as examples.

i) Decomposable kernel: notice that in the case of the Gaussian decomposable
kernel, i.e. A(ω) = A, K0(δ) = Ak0(δ), k0(δ) ≥ 0 and k0(δ) = 1, then we
have:

bD(δ) ≤
1

2
(1 + k0(2δ))‖A‖2 + k0(δ)

2

ii) curl-free and div-free kernels: recall that in this case p = d. For the (Gaus-
sian) curl-free kernel, A(ω) = ωω∗ where ω ∈ Rd ∼ N (0, σ−2Id) thus
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Eµ[A(ω)] = Id/σ
2 and Vµ[A(ω)] = (d + 1)Id/σ

4 (see Petersen et al. (2008)).
Hence,

bD(δ) ≤
1

2

∥∥∥∥ 1

σ2
K0(2δ)− 2K0(δ)

2

∥∥∥∥
2

+
(d+ 1)

σ4

Eventually for the Gaussian divergence-free kernel, A(ω) = I‖ω‖22 − ωω∗,
thus Eµ[A(ω)] = Id(d − 1)/σ2 and Vµ[A(ω)] = d(4d − 3)Id/σ

4 (see Petersen
et al. (2008)). Hence,

bD(δ) ≤
1

2

∥∥∥∥(d− 1)

σ2
K0(2δ)− 2K0(δ)

2

∥∥∥∥
2

+
d(4d− 3)

σ4

An empirical illustration of these bounds is shown in fig. 6.

Computing the Orlicz norm: For a random variable with strictly monotonic
moment generating function (MGF), one can characterize its ψ1 Orlicz norm by
taking the functional inverse of the MGF evaluated at 2. In other words

‖X‖ψ1
= MGF(x)−1

X (2).

For the Gaussian curl-free and divergence-free kernel∥∥Adiv(ω)∥∥
2
=
∥∥Acurl(ω)∥∥

2
= ‖ω‖22

where ω ∼ N (0, Id/σ
2), hence ‖A(ω)‖2 ∼ Γ(p/2, 2/σ2). The MGF of this gamma

distribution is MGF(x)−1(t) = (1− 2t/σ2)−(p/2). Eventually

∥∥∥∥Adiv(ω)∥∥
2

∥∥
ψ1

=
∥∥∥∥Acurl(ω)∥∥

2

∥∥
ψ1

=
σ2

2
(1− 4

p
2 ).

4 Learning with ORFF
In practise, the previous bounds are however too large to find a safe value for D.
In the following, numerical examples of ORFF-approximations are presented.

4.1 Penalized regression with ORFF
Once we have an approximated feature map, we can use it to provide a feature
matrix of size p′D×p with matrix B(ω) of size p×p′ such that A(ω) = B(ω)B(ω)∗.
A function f ∈ HK is then approximated by a linear model

f̃(x) = Φ̃(x)∗θ, where θ ∈ Rp′D.
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Let S = {(xi, yi) ∈ Rd×Rp, i = 1, . . . , N} be a collection of i.i.d training samples.
Given a local loss function L : S → R+ and a `2 penalty, we minimize

L(θ) = 1

N

N∑
i=1

L
(
Φ̃(xi)

∗θ, yi

)
+ λ‖θ‖22, (10)

instead of minimizing L(f) = 1
N

∑N
i=1 L(f(xi), yi) + λ‖f‖2HK

. To find a minimizer
of the optimization problem eq. (10) many optimization algorithms are available.
For instance, in large-scale context, a stochastic gradient descent algorithm would
be be suitable: we can adapt the algorithm to the kind of kernel/problematic. We
investigate two optimization algorithms: a Stein equation solver appropriate for
the decomposable kernel and a (stochastic) gradient descent for non-decomposable
kernels (e.g. the curl-free and divergence-free kernels).

Closed form for the decomposable kernel: for the real decomposable kernel
K0(δ) = k(δ)A when L(y, y′) = ‖y − y′‖22 (Kernel Ridge regression in HK), the
learning problem described in eq. (10) can be re-written in terms of matrices to
find the unique minimizer Θ∗, where vec(Θ) = θ such that θ is a p′D vector and
Θ a p′ ×D matrix. If φ̃ is a feature map (φ̃(X) is a matrix of size D×N) for the
scalar kernel k0, then

Φ̃(x)∗θ = (φ̃(x)∗ ⊗B)θ = BΘφ̃(x)

and
θ∗ = arg min

Θ∈Rp′×D

∥∥∥BΘφ̃(X)− Y
∥∥∥2
F
+ λ‖Θ‖2F . (11)

This is a convex optimization problem and a sufficient condition is:

φ̃(X)φ̃(X)∗Θ∗B
∗B − φ̃(X)Y ∗B + λΘ∗ = 0,

which is a Stein equation.

Gradient computation for the general case. When it is not possible or
desirable to use Stein’s equations solver one can apply a (stochastic) gradient
descent algorithm. The gradient computation for and `2-loss applied to ORFF
model is briefly recalled in appendix D.1.

4.2 Numerical illustration
We present a few experiments to complete the theoretical contribution and il-
lustrate the behavior of ORFF-regression. Other experimentalresults with noisy
output data are shown in appendix D.2.
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Figure 2: Computation time of ORFF and OVK on MNIST versus the number of
datapoints N .
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Figure 3: Prediction Error in percent on MNIST versus D, the number of Fourier
features. In blue dashed line, ORFF and in red solid line OVK. For OVK and
ORFF the number of datapoints N = 1000.
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Datasets: the first dataset is the handwritten digits recognition dataset MNIST3

We select a training set of 12000 images and a test set of 10000 images. The
inputs are images represented as a vector xi ∈ [0, 255]784 and the targets are
integers between 0 and 9. First we scaled the inputs such that they take values
in [−1, 1]784. Then we binarize the targets such that each number is represented
by a unique binary vector of length 10. To predict classes, we use simplex coding
method presented in Mroueh et al. (2012). The intuition behind simplex coding
is to project the binarized labels of dimension p onto the most separated vectors
on the hypersphere of dimension p − 1. For ORFF we can encode directly this
projection in the B matrix of the decomposable kernel K0(δ) = BB∗k0(δ) where
k0 is a Gaussian kernel. For OVK we project the binarized targets on the simplex
as a preprocessing step, before learning with the kernel K0(δ) = Ipk0(δ), where k0
is a also Gaussian kernel.

The second dataset corresponds to a 2D-vector field with structure. We gen-
erated a scalar field as a mixture of five Gaussians located at [0, 0], [0, 1], [0,−1],
with positive values and at [−1, 0], [1, 0] with negative values. The curl-free field
has been generated by taking the gradient of the scalar-field, and the divergence-
free field by taking the orthogonal of the curl-free field. These 2D-datasets are
depicted in fig. 7.

Approximation: We trained both an ORFF and an OVK model on the hand-
written digits recognition dataset (MNIST) with a decomposable Gaussian kernel
with signature K0(δ) = exp(−‖δ‖/σ2)A. To find a solution of the optimization
problem described in eq. (11), we use off-the-shelf solver4 able to handle Stein’s
equation. For both methods we choose σ = 20 and use a 2-fold cross validation
on the training set to select the optimal λ. First, fig. 2 shows the running time
comparison between OVK and ORFF models using D = 1000 Fourier features
against the number of datapoints N . The log-log plot shows ORFF scaling better
than the OVK w.r.t the number of points. Second, fig. 3 shows the test prediction
error versus the number of ORFFs D, when using N = 1000 training points. As
expected, the ORFF model converges toward the OVK model when the number
of features increases.

Independent (RFF) prediction vs Structured prediction on vector fields:
we perform a similar experiment over a simulated dataset designed for learning a
2D-vector field with structure. Figure 4 reports the Mean Squared Error versus
the number of ORFF D. For this experiment we use a Gaussian curl-free kernel
and tune its σ hyperparameter as well as the λ on a grid. The curl-free ORFF

3available at http://yann.lecun.com/exdb/mnist.
4 http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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Figure 4: Mean squared (test) error on the synthetic data versus number of Fourier
features D. The solid lines represent decomposable (blue) and curl (red) OVK
methods while the dotted lines represent decomposable (blue) and curl (red) ORFF
methods.

outperforms classic RFFs by tending more quickly towards the noise level. Figure 5
shows the computation time between curl-ORFF and curl-OVK indicating that the
OVK solution does not scale to large datasets, while ORFF scales well with when
the number of data increases. When N > 104 exact OVK is not able to be trained
in reasonable time (> 1000 seconds).

5 Conclusion
We introduced a general and versatile framework for operator-valued kernel ap-
proximation with Operator Random Fourier Features. We showed the uniform
convergence of these approximations by proving a matrix concentration inequality
for bounded and unbounded ORFFs. The complexity in time of these approx-
imations together with the linear learning algorithm make this implementation
scalable with the number of data and therefore interesting compared to OVK
regression. The numerical illustration shows the behavior expected from theory.
ORFFs are especially a very promising approach in vector field learning or on noisy
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Figure 5: Computation time of curl-ORFF and curl-OVK versus the number of
datapoints on synthetic data. We fixed D = 1000 Fourier features and study the
computation time w.r.t the number of points.

datasets. Another appealing direction is to use this architecture to automatically
learn operator-valued kernels by learning a mixture of ORFFs in order to choose
appropriate kernels, a working direction closely related to the recent method called
“Alacarte” (Yang et al., 2015) based on the very efficient “FastFood” method (Le
et al., 2013) for scalar kernels. Finally this work opens the door to building deeper
architectures by stacking vector-valued functions while keeping a kernel view for
large datasets.

References
R. Ahlswede and A. Winter. Strong converse for identification via quantum chan-

nels. IEEE Trans. Inform. Theory 48(3), pages 569––679, 2002.

M. A. Álvarez, L. Rosasco, and N. D. Lawrence. Kernels for vector-valued func-
tions: a review. Foundations and Trends in Machine Learning, 4(3):195–266,
2012.

F. Bach. On the equivalence between quadrature rules and random features. HAl-
report-/hal-01118276, 2015.

L. Baldassarre, L. Rosasco, A. Barla, and A. Verri. Vector field learning via
spectral filtering. In J. Balcazar, F. Bonchi, A. Gionis, and M. Sebag, editors,
ECML/PKDD, volume 6321 of LNCS, pages 56–71. Springer Berlin / Heidel-
berg, 2010.

21



L. Baldassarre, L. Rosasco, A. Barla, and A. Verri. Multi-output learning via
spectral filtering. Machine Learning, 87(3):259–301, 2012.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities. Oxford
Press, 2013.

C. Carmeli, E. De Vito, A. Toigo, and V. Umanità. Vector valued reproducing
kernel hilbert spaces and universality. Analysis and Applications, 8:19–61, 2010.

F. Dinuzzo, C. Ong, P. Gehler, and G. Pillonetto. Learning output kernels with
block coordinate descent. In Proc. of the 28th Int. Conf. on Machine Learning,
2011.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. Journal of Machine Learning Research, 6:615–637, 2005.

G. B. Folland. A course in abstract harmonic analysis. CRC press, 1994.

D. C.-L. Fong and M. Saunders. Lsmr: An iterative algorithm for sparse least-
squares problems. SIAM Journal on Scientific Computing, 33(5):2950–2971,
2011.

E. Fuselier. Refined Error Estimates for Matrix-Valued Radial Basis Functions.
PhD thesis, Texas A&M University, May 2006.

P.-S. Huang, L. Deng, M. Hasegawa-Johnson, and X. He. Random features for ker-
nel deep convex network. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 3143–3147. IEEE, 2013.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to
detect remote protein homologies. In ISMB, volume 99, pages 149–158, 1999.

V. Koltchinskii et al. A remark on low rank matrix recovery and noncommutative
bernstein type inequalities. In From Probability to Statistics and Back: High-
Dimensional Models and Processes, pages 213–226. Institute of Mathematical
Statistics, 2013.

Q. V. Le, T. Sarlós, and A. J. Smola. Fastfood - computing hilbert space expansions
in loglinear time. In Proc. of ICML 2013, Atlanta, USA, 16-21 June 2013, pages
244–252, 2013.

N. Lim, F. d’Alché-Buc, C. Auliac, and G. Michailidis. Operator-valued kernel-
based vector autoregressive models for network inference. Machine Learning, 99
(3):489–513, 2015.

22



Y. Macedo and R. Castro. Learning div-free and curl-free vector fields by matrix-
valued kernels. Technical report, Preprint A 679/2010 IMPA, 2008.

L. Mackey, M. I. Jordan, R. Chen, B. Farrel, and J. Tropp. Matrix concentration
inequalities via the method of exchangeable pairs. The Annals of Probability,
42:3:906–945, 2014.

C. A. Micchelli and M. A. Pontil. On learning vector-valued functions. Neural
Computation, 17:177–204, 2005.

M. Micheli and J. Glaunes. Matrix-valued kernels for shape deformation analysis.
Technical report, Arxiv report, 2013.

Y. Mroueh, T. Poggio, L. Rosasco, and J.-j. Slotine. Multiclass learning with
simplex coding. In Advances in NIPS, pages 2789–2797, 2012.

K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7:15, 2008.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
NIPS 20, Vancouver, British Columbia, Canada, December 3-6, 2007, pages
1177–1184, 2007.

W. Rudin. Fourier Analysis on groups. Wiley, 1994.

V. Sindhwani, H. Q. Minh, and A. Lozano. Scalable matrix-valued kernel learning
for high-dimensional nonlinear multivariate regression and granger causality.
In Proc. of UAI’13, Bellevue, WA, USA, August 11-15, 2013. AUAI Press,
Corvallis, Oregon, 2013.

P. Sonneveld and M. B. van Gijzen. Idr (s): A family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations. SIAM Journal on
Scientific Computing, 31(2):1035–1062, 2008.

B. Sriperumbudur and Z. Szabo. Optimal rates for random fourier features. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in NIPS 28, pages 1144–1152, 2015.

D. J. Sutherland and J. G. Schneider. On the error of random fourier features. In
Proc. of the Thirty-First Conference on Uncertainty in Artificial Intelligence,
UAI 2015, July 12-16, 2015, Amsterdam, The Netherlands, pages 862–871, 2015.

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations
of computational mathematics, 12(4):389–434, 2012.

23



N. Wahlström, M. Kok, T. Schön, and F. Gustafsson. Modeling magnetic fields
using gaussian processes. In in Proc. of the 38th ICASSP, 2013.

T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z. Zhou. Nyström method vs ran-
dom fourier features: A theoretical and empirical comparison. In F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, editors, NIPS 25, pages 476–484,
2012.

Z. Yang, A. J. Smola, L. Song, and A. G. Wilson. A la carte - learning fast kernels.
CoRR, abs/1412.6493, 2014.

Z. Yang, A. G. Wilson, A. J. Smola, and L. Song. A la carte - learning fast kernels.
In Proc. of AISTATS 2015, San Diego, California, USA, 2015, 2015.

H. Zhang, Y. Xu, and Q. Zhang. Refinement of operator-valued reproducing
kernels. Journal of Machine Learning Research, 13:91–136, 2012.

24



A Reminder on Random Fourier Feature in the scalar
case

Rahimi and Recht (2007) proved the uniform convergence of Random Fourier Feature (RFF) approxima-
tion for a scalar shift invariant kernel.

Theorem A.1 (Uniform error bound for RFF, Rahimi and Recht (2007)). Let C be a compact of subset
of Rd of diameter l. Let k a shift invariant kernel, differentiable with a bounded first derivative and µ its
normalized inverse Fourier transform. Let D the dimension of the Fourier feature vectors. Then, for the
mapping φ̃ described in section 2, we have :

P
{

sup
x,z∈C

∥∥∥k̃(x, z)− k(x, z)
∥∥∥
2
≥ ε

}
≤ 28

(
dσl

ε

)2

exp
(
− ε2D

4(d+ 2)

)
(12)

From theorem A.1, we can deduce the following corollary about the uniform convergence of the ORFF
approximation of the decomposable kernel.

Corollary A.1.1 (Uniform error bound for decomposable ORFF). Let C be a compact of subset of Rd of
diameter l. Kdec is a decomposable kernel built from a p×p semi-definite matrix A and k, a shift invariant
and differentiable kernel whose first derivative is bounded. Let k̃ the Random Fourier approximation for
the scalar-valued kernel k. We recall that: for a given pair (x, z) ∈ C, K̃(x, z) = Φ̃(x)∗Φ̃(z) = Ak̃(x, z)
and K0(x− z) = AEµ[k̃(x, z)].

P
{

sup
x,z∈C

∥∥∥K̃(x, z)−K(x, z)
∥∥∥
2
≥ ε

}
≤ 28

(
dσ‖A‖2l

ε

)2

exp

(
− ε2D

4‖A‖22(d+ 2)

)

Proof. The proof directly extends A.1 given by Rahimi and Recht (2007). Since

sup
x,z∈C

∥∥∥K̃(x, z)−K(x, z)
∥∥∥
2
= sup
x,z∈C

‖A‖2.
∣∣∣K̃(x, z)− k(x, z)

∣∣∣
and then, taking ε′ = ‖A‖2ε gives the following result for all positive ε′:

P
{

sup
x,z∈C

∥∥∥A(K̃(x, z)− k(x, z))
∥∥∥
2
≥ ε′

}
≤ 28

(
dσ‖A‖2l

ε′

)2

exp

(
− ε′2D

4‖A‖22(d+ 2)

)

Please note that a similar corollary could have been obtained for the recent result of Sutherland and
Schneider (2015) who refined the bound proposed by Rahimi and Recht by using a Bernstein concentration
inequality instead of the Hoeffding inequality.

B Proof of the uniform error bound for ORFF ap-
proximation

This section present a proof of theorem 3.1.

We note δ = x − z, K̃(x, z) = Φ̃(x)∗Φ̃(z), K̃j(x, z) = Φ̃j(x)
∗Φ̃j(z) and K0(δ) = K(x, z). For sake of

simplicity, we use the following notation:

F (δ) = F (x− z) = K̃(x, z)−K(x, z)

Fj(δ) = Fj(x− z) = (K̃j(x, z)−K(x, z))/D

Compared to the scalar case, the proof follows the same scheme as the one described in (Rahimi and
Recht, 2007; Sutherland and Schneider, 2015) but requires to consider matrix norms and appropriate
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matrix concentration inequality. The main feature of theorem 3.1 is that it covers the case of bounded
ORFF as well as unbounded ORFF: in the case of bounded ORFF, a Bernstein inequality for matrix
concentration such that the one proved in Mackey et al. (2014) (Corollary 5.2) or the formulation of
Tropp (2012) recalled in Koltchinskii et al. (2013) is suitable. However some kernels like the curl and
the div-free kernels do not have bounded ‖Fj‖ but exhibit Fj with subexponential tails. Therefore, we
will use a Bernstein matrix concentration inequality adapted for random matrices with subexponential
norms (Koltchinskii et al. (2013)).

B.1 Epsilon-net
Let DC = {x− z | x, z ∈ C} with diameter at most 2l where l is the diameter of C. Since C is supposed
compact, so is DC . It is then possible to find an ε-net covering DC with at most T = (4l/r)d balls of
radius r.

Let us call δi, i = 1, . . . , T the center of the i-th ball, also called anchor of the ε-net. Denote LF
the Lipschitz constant of F . Let ‖.‖ be the `2 norm on L(Rp), that is the spectral norm. Now let use
introduce the following lemma:

Lemma B.0.1. ∀δ ∈ DC, if (1): LF ≤ ε
2r and (2): ‖F (δi)‖ ≤ ε

2 ,for all 0 < i < T , then ‖F (δ)‖ ≤ ε.

Proof. ‖F (δ)‖ = ‖F (δ)− F (δi) + F (δi)‖ ≤ ‖F (δ)− F (δi)‖ + ‖F (δi)‖, for all 0 < i < T . Using the
Lipschitz continuity of F we have ‖F (δ)− F (δi)‖ ≤ LF ‖δ − δi‖ ≤ rLF hence ‖F (δ)‖ ≤ rLF + ‖F (δi)‖.

To apply the lemma, we must bound the Lipschitz constant of the matrix-valued function F (condition
(1)) and ‖F (δi)‖, for all i = 1, . . . , T as well (condition (2)).

B.2 Regularity condition
We first establish that ∂

∂δEK̃(δ) = E ∂
∂δ K̃(δ). Since K̃ is a finite dimensional matrix-valued function,

we verify the integrability coefficient-wise, following Sutherland and Schneider (2015)’s demonstration.
Namely, without loss of generality we show[

∂

∂δ
EK̃(δ)

]
lm

= E
∂

∂δ

[
K̃(δ)

]
lm

where [A]lm denotes the l-th row and m-th column element of the matrix A.

Proposition B.1 (Differentiation under the integral sign). Let X be an open subset of Rd and Ω be a
measured space. Suppose that the function f : X × Ω → R verifies the following conditions:

• f(x, ω) is a measurable function of ω for each x in X .

• For almost all ω in Ω, the derivative ∂f(x, ω)/∂xi exists for all x in X .

• There is an integrable function Θ : Ω → R such that |∂f(x, ω)/∂xi| ≤ Θ(ω) for all x in X .

Then
∂

∂xi

∫
Ω

f(x, ω)dω =

∫
Ω

∂

∂xi
f(x, ω)dω.

Define the function G̃i,l,mx,y (t, ω) : R × Ω → R by G̃i,l,mx,y (t, ω) =
[
K̃(x+ tei − y)

]
lm

=
[
G̃ix,y(t, ω)

]
lm

,

where ei is the i-th standard basis vector. Then G̃i,l,mx,y is integrable w.r.t. ω since∫
Ω

G̃i,l,mx,y (t, ω)dω = E
[
K̃(x+ tei − y)

]
lm

= [K(x+ tei − y)]lm <∞.
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Additionally for any ω in Ω, ∂/∂tG̃i,l,mx,y (t, ω) exists and satisfies

E
∣∣∣∣ ∂∂t G̃i,l,m

x,y (t, ω)

∣∣∣∣ = E

∣∣∣∣∣∣ 1D
D∑

j=1

A(ω)lm

(
sin〈y, ωj〉

∂

∂t
sin(〈x, ωj〉+ tωij) + cos〈y, ωj〉

∂

∂t
cos(〈x, ωj〉+ tωij)

)∣∣∣∣∣∣
= E

∣∣∣∣∣∣ 1D
D∑

j=1

A(ω)lm (ωji sin〈y, ωj〉 sin(〈x, ωj〉+ tωji)− ωji cos〈y, ωj〉 cos(〈x, ωj〉+ tωji))

∣∣∣∣∣∣
≤ E

 1

D

D∑
j=1

|A(ω)lmωji sin〈y, ωj〉 sin(〈x, ωj〉+ tωji)|+ |A(ω)lmωji cos〈y, ωj〉 cos(〈x, ωj〉+ tωji)|


≤ E

 1

D

D∑
j=1

2|A(ω)lmωji|

 .
Hence

E
∣∣∣∣ ∂∂tG̃ix,y(t, ω)

∣∣∣∣ ≤ 2E [|ω ⊗A(ω)|] .

which is assumed to exist since in finite dimensions all norms are equivalent and Eµ
[
‖ω‖2‖A(ω)‖2

]
is

assume to exists. Thus applying proposition B.1 we have
[
∂
∂δi

EK̃(δ)
]
lm

= E ∂
∂δi

[
K̃(δ)

]
lm

The same
holds for y by symmetry. Combining the results for each component xi and for each element lm, we get
that ∂

∂δEK̃(δ) = E ∂
∂δ K̃(δ).

B.3 Bounding the Lipschitz constant
Since F is differentiable, LF =

∥∥∂F
∂δ (δ

∗)
∥∥ where δ∗ = argmaxδ∈DC

∥∥∂F
∂δ (δ)

∥∥.
Eµ,δ∗

[
L2
f

]
= Eµ,δ∗

∥∥∥∥∥∂K̃∂δ (δ∗)− ∂K0

∂δ
(δ∗)

∥∥∥∥∥
2

≤ Eδ∗

Eµ
∥∥∥∥∥∂K̃∂δ (δ∗)

∥∥∥∥∥
2

− 2

∥∥∥∥∂K0

∂δ
(δ∗)

∥∥∥∥Eµ
∥∥∥∥∥∂K̃∂δ (δ∗)

∥∥∥∥∥+
∥∥∥∥∂K0

∂δ
(δ∗)

∥∥∥∥2


Using Jensen’s inequality
∥∥∥Eµ ∂K̃∂δ (δ∗)∥∥∥ ≤ Eµ

∥∥∥∂K̃∂δ (δ∗)∥∥∥ and ∂
∂δEK̃(δ) = E ∂

∂δ K̃(δ). Since K̃ (see

appendix B.2), Eµ ∂K̃∂δ (δ
∗) = ∂

∂δEµK̃(δ∗) = ∂K0

∂δ (δ∗) thus

Eµ,δ∗
[
L2
f

]
≤ Eδ∗

Eµ
∥∥∥∥∥∂K̃∂δ (δ∗)

∥∥∥∥∥
2

− 2

∥∥∥∥∂K0

∂δ
(δ∗)

∥∥∥∥2 + ∥∥∥∥∂K0

∂δ
(δ∗)

∥∥∥∥2


= Eµ,δ∗

∥∥∥∥∥∂K̃∂δ (δ∗)

∥∥∥∥∥
2

− Eδ∗
∥∥∥∥∂K0

∂δ
(δ∗)

∥∥∥∥2

≤ Eµ,δ∗

∥∥∥∥∥∂K̃∂δ (δ∗)

∥∥∥∥∥
2

= Eµ,δ∗
∥∥∥∥ ∂

∂δ∗
cos〈δ∗, ω〉A(ω)

∥∥∥∥2
= Eµ,δ∗‖−ω sin(〈δ∗, ω〉)⊗A(ω)‖2

≤ Eµ
[
‖ω‖2‖A(ω)‖2

]
, σ2

p

Eventually applying Markov’s inequality yields

P
{
LF ≥ ε

2r

}
= P

{
L2
F ≥

( ε
2r

)2}
≤ σ2

p

(
2r

ε

)2

. (13)
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B.4 Bounding F on a given anchor point δi
To bound ‖F (δi)‖2, Hoeffding inequality devoted to matrix concentration Mackey et al. (2014) can be
applied. We prefer here to turn to tighter and refined inequalities such as Matrix Bernstein inequalities
(Sutherland and Schneider (2015) also pointed that for the scalar case).

If we had bounded ORFF, we could use the following Bernstein matrix concentration inequality
proposed in Ahlswede and Winter (2002); Tropp (2012); Koltchinskii et al. (2013).

Theorem B.1 (Bounded non-commutative Bernstein concentration inequality). Verbatim from Theorem
3 of Koltchinskii et al. (2013), consider a sequence (Xj)

D
j=1 of D independent Hermitian (here symmetric)

p × p random matrices that satisfy EXj = 0 and suppose that for some constant U > 0, ‖Xj‖ ≤ U for
each index j. Denote BD =

∥∥E[X2
1 + . . . X2

D]
∥∥. Then, for all ε ≥ 0,

P


∥∥∥∥∥∥
D∑
j=1

Xj

∥∥∥∥∥∥ ≥ ε

 ≤ p exp
(
− ε2

2BD + 2Uε/3

)
However, to cover the general case including unbounded ORFFs like curl and div-free ORFFs, we

choose a version of Bernstein matrix concentration inequality proposed in Koltchinskii et al. (2013) that
allow to consider matrices are not uniformly bounded but have subexponential tails.

Theorem B.2 (Unbounded non-commutative Bernstein concentration inequality). Verbatim from The-
orem 4 of Koltchinskii et al. (2013). Let X1, . . . , XD be independent Hermitian p× p random matrices,
such that EXj = 0 for all j = 1, . . . , D. Let ψ = ψ1. Define

F(D) ,
D∑
j=1

Xj and BD ,

∥∥∥∥∥∥E
 D∑
j=1

X2
j

∥∥∥∥∥∥.
Suppose that,

M = 2 max
1≤j≤D

‖‖Xj‖‖ψ

Let δ ∈
]
0; 2

e−1

[
and

Ū ,M log
(
2

δ

M2

B2
D

+ 1

)
Then, for εŪ ≤ (e− 1)(1 + δ)BD,

P
{∥∥F(D)

∥∥ ≥ ε
}
≤ 2p exp

(
− ε2

2(1 + δ)BD + 2εŪ/3

)
(14)

and for εŪ > (e− 1)(1 + δ)BD,

P
{∥∥F(D)

∥∥ ≥ ε
}
≤ 2p exp

(
− ε

(e− 1)Ū

)
. (15)

To use this theorem, we set: Xj = Fj(δi). We have indeed: Eµ[Fj(δi)] = 0 since K̃(δi) is the Monte-
Carlo approximation of K0(δi) and the matrices Fj(δi) are symmetric. We assume we can bound all the
Orlicz norms of the Fj(δi) = 1

D (K̃j(δi)−K0(δi)). Please note that in the following we use a constant m
such that m = DM ,

m = 2D max
1≤j≤D

‖‖Fj(δi)‖‖ψ

≤ 2 max
1≤j≤D

∥∥∥∥∥∥K̃j(δi)
∥∥∥∥∥∥

ψ
+ 2‖‖K0(δi)‖‖ψ

< 4 max
1≤j≤D

‖‖A(ωj)‖‖ψ + 4‖K0(δi)‖

Then Ū can be re-written using m and D:

Ū =
m

D
log
(
2

δ

m2

b2D
+ 1

)
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We define: ū = DŪ and bD = DBD. Then, we get: for εŪ ≤ (e− 1)(1 + δ)BD,

P {‖F (δi)‖ ≥ ε} ≤ 2p exp
(
− Dε2

2(1 + δ)bD + 2εū/3

)
(16)

and for εŪ > (e− 1)(1 + δ)BD,

P {‖F (δi)‖ ≥ ε} ≤ 2p exp
(
− Dε

(e− 1)ū

)
. (17)

B.5 Union bound
Now take the union bound over the centers of the ε-net:

P

{ ∗⋃
i=1

‖F (δi)‖ ≥ ε

2

}
≤ 4Tp

exp
(
− ε2D

8
(
(1+δ)bD+ 2ε

6 ū
)) if εŪD ≤ (e− 1)(1 + δ)BD

exp
(
− εD

2(e−1)ū

)
otherwise.

(18)

B.5.1 Optimizing over r

Combining eq. (18) and eq. (13) and taking δ = 1 < 2/(e− 1) yields

P
{

sup
δ∈DC

‖F (δ)‖ ≤ ε

}
≥ 1− κ1r

−d − κ2r
2,

with

κ2 = 4σ2
pε

−2 and κ1 = 2p(4l)d

exp
(
− ε2D

16
(
bD+ ε

6 ūD

)) if εŪD ≤ 2(e− 1)BD

exp
(
− εD

2(e−1)ūD

)
otherwise.

we choose r such that dκ1r−d−1 − 2κ2r = 0, i.e. r =
(
dκ1

2κ2

) 1
d+2 . Eventually let

C ′
d =

((
d

2

) −d
d+2

+

(
d

2

) 2
d+2

)

the bound becomes

P
{

sup
δ∈DC

∥∥∥F̃i(δ)∥∥∥ ≥ ε

}
≤ C ′

dκ
2

d+2

1 κ
d

d+2

2

= C ′
d

(
4σ2

pε
−2
) d

d+2

2p(4l)d

exp
(
− ε2D

16
(
BD+ ε

6 ŪD

)) if εŪD ≤ 2(e− 1)BD

exp
(
− εD

2(e−1)ŪD

)
otherwise

 2
d+2

= pC ′
d2

2+4d+2d
d+2

(
σpl

ε

) 2d
d+2

exp
(
− ε2

8(d+2)
(
BD+ ε

6 ŪD

)) if εŪD ≤ 2(e− 1)BD

exp
(
− ε

(d+2)(e−1)ŪD

)
otherwise

= pC ′
d2

6d+2
d+2

(
σpl

ε

) 2
1+2/d

exp
(
− ε2

8(d+2)
(
BD+ ε

6 ŪD

)) if εŪD ≤ 2(e− 1)BD

exp
(
− ε

(d+2)(e−1)ŪD

)
otherwise.

Conclude the proof by taking Cd = C ′
d2

6d+2
d+2 .
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C Application of the bounds to decomposable, curl-
free, divergence-free kernels

Proposition C.1 (Bounding the term bD). Define the random matrix Vµ[A(ω)] as follows: `,m ∈
{1, . . . , p}, Vµ[A(ω)]`m =

∑p
r=1Covµ[(A(ω)`r, A(ω)rm]. For a given δ = x−z, with the previous notations

bD = D

∥∥∥∥∥∥Eµ
 D∑
j=1

(
F̃j(δ)

)2∥∥∥∥∥∥
2

,

we have:
bD ≤ 1

2
(
∥∥(K0(2δ) +K0(0))Eµ[A(ω)]− 2K0(δ)

2
∥∥
2
+ 2‖Vµ[A(ω)]‖2).

Proof. We fix δ = x − z. For sake of simplicity, we note: BD =
∥∥Eµ [F1(δ)

2 + . . .+ FD(δ)
2
]∥∥

2
and we

have bD = DBD, with the notations of the theorem. Then

BD =

∥∥∥∥∥∥Eµ
 D∑
j=1

1

D2
(K̃j(δ)−K0(δ))

2

∥∥∥∥∥∥
2

=
1

D2

∥∥∥∥∥∥
D∑
j=1

Eµ
[(
K̃j(δ)

2 − K̃j(δ)K0(δ)−K0(δ)K̃j(δ) +K0(δ)
2
)]∥∥∥∥∥∥

2

.

As K0(δ)
∗ = K0(δ) and A(ωj)∗ = A(ωj), then K̃j(δ)

∗ = K̃j(δ), we have

BD =
1

D2

∥∥∥∥∥∥
∑
j

Eµ
[
K̃j(δ)

2 − 2K̃j(δ)K0(δ) +K0(δ)
2
]∥∥∥∥∥∥

2

.

From the definition of K̃j , Eµ[K̃j(δ)] = K0(δ) which leads to

BD =
1

D2

∥∥∥∥∥∥
D∑
j=1

Eµ
(
K̃j(δ)

2 −K0(δ)
2
)∥∥∥∥∥∥

2

Now we omit the j index since all vectors ωj are identically distributed and consider a random vector
ω ∼ µ:

BD =
1

D2

∥∥DEµ
[
(cos〈ω, δ〉)2A(ω)2

]
−K0(δ)

2
∥∥
2

A trigonometry property gives us: (cos〈ω, δ〉)2 = 1
2 (cos〈ω, 2δ〉+ cos〈ω, 0〉)

BD =
1

D2

∥∥∥∥D2 Eµ
[
(cos〈ω, 2δ〉+ cos〈ω, 0〉)A(ω)2

]
−K0(δ)

2

∥∥∥∥
2

=
1

2D

∥∥∥∥Eµ [(cos〈ω, 2δ〉+ cos〈ω, 0〉)A(ω)2
]
− 2

D
K0(δ)

2

∥∥∥∥
2

(19)

Moreover, we write the expectation of a matrix product, coefficient by coefficient, as: ∀`,m ∈ {1, . . . , p},

Eµ
[(
cos〈ω, 2δ〉A(ω)2

)]
`m

=
∑
r

Eµ [cos〈ω, 2δ〉A(ω)]`r Eµ [A(ω)]rm + Covµ[cos〈ω, 2δ〉A(ω)`r, A(ω)rm]

Eµ
[(
cos〈ω, 2δ〉A(ω)2

)]
= Eµ[cos〈ω, 2δ〉A(ω)]Eµ[A(ω)] + Σcos

= K0(2δ)Eµ[A(ω)] + Σcos

where the random matrix Σcos is defined by: Σcos
`m =

∑
rCovµ[cos〈ω, 2δ〉A(ω)`r, A(ω)rm]. Similarly, we

get:
Eµ
[
cos〈ω, 0〉A(ω)2

]
= K0(0)Eµ [A(ω)] + Σcos.
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Hence, we have:

BD =
1

2D

∥∥(K0(2δ) +K0(0))Eµ[A(ω)]− 2K0(δ)
2 + 2Σcos∥∥

2

≤ 1

2D

[∥∥(K0(2δ) +K0(0))Eµ[A(ω)]− 2K0(δ)
2
∥∥
2
+ 2‖Vµ[A(ω)]‖2

]
,

using ‖Σcos‖2 ≤ ‖Vµ[A(ω)]‖2, where Vµ[A(ω)] = Eµ[(A(ω) − Eµ[A(ω)])2] and for all `,m ∈ {1, . . . , p},
Vµ[A(ω)]`m =

∑p
r=1Covµ[A(ω)`r, A(ω)rm].

For the three kernels of interest, we illustrate this bound in fig. 6.
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Figure 6: Upper bound on the variance of the decomposable and curl-free kernel obtained
via ORFF. We generated a random point in [−1, 1]4 and computed the empirical variance
of the estimator (blue line). We also plotted (red line) the theoretical bound proposed in
proposition C.1.

D Additional information and results
D.1 Implementation detail
For each ωj ∼ µ, let B(ωj) be a p by p′ matrix such that B(ωj)B(ωj)

∗ = A(ωj). In practice, making
a prediction y = h(x) using directly the formula h(x) = Φ̃(x)∗θ is prohibitive. Indeed, if Φ(x) =⊕D

j=1 exp(−i〈x, ωj〉)B(ωj)
∗B(ωj), it would cost O(Dp′p) operation to make a prediction, since ˜Φ(x) is a

Dp′ by p matrix.

D.1.1 Minimizing Eq. 11 in the main paper
Recall we want to minimize

θ∗ = argmin
θ∈Rp′D

∥∥∥φ̃(X)∗θ − Y
∥∥∥2 + λ‖θ‖2. (20)

The idea is to replace the expensive computation of the matrix-vector product by Φ̃(X)∗θ by a cheaper
linear operator Px such that Φ̃(X)∗θ = Pxθ. In other word, we minimize:

θ∗ = argmin
θ∈Rp′D

‖PXθ − Y ‖2 + λ‖θ‖2. (21)

Among many possibilities of solving eq. (21), we focused on two types of methods:

i) Gradient based methods: to solve eq. (21) one can iterate θt+1 = θt − ηt(P
∗
X(PXθt − y) + λθt).

replace PX by Pxt
, where xt is a random sample of X at iteration T to perform a stochastic

gradient descent.
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ii) Linear methods: since the optimization problem defined in eq. (21) is convex, one can find a solution
to the first order condition, namely θ∗ such that (P ∗

XPX)θ∗ = P ∗
Xy. Many Iterative solvers able

to solve such linear system are available, such as Sonneveld and van Gijzen (2008) or Fong and
Saunders (2011).

D.1.2 Defining efficient linear operators

Decomposable kernel Recall that for the decomposable kernel K0(δ) = k0(δ)A where k0 is a
scalar shift-invariant kernel, A(ωj) = A = BB∗ and

Φ̃(x) =
D⊕
j=1

exp(−i〈x, ωj〉)B∗

= φ̃(x)⊗B∗

where φ̃(x) =
⊕D

j=1 exp(−i〈x, ωj〉) is the RFF corresponding to the scalar kernel k0. Hence h(x) can be
rewritten in the following way

h(x) = (φ̃(x)⊗B∗)∗Θ = vec(φ̃(x)∗ΘB∗)

where Θ is a D by p′ matrix such that vec(Θ) = Θ. Eventually we define the following linear (in θ)
operator

P dec
x : θ 7→ vec(φ̃(x)∗ΘB∗)

Then
h(x) = P dec

x θ = Φ̃(x)∗θ

Using this formulation, it only costs O(Dp′ + p′p) operations to make a prediction. If B = Id it reduces
to O(Dp). Moreover this formulation cuts down memory consumption from O(Dp′p) to O(D + p′p).

Curl-free kernel For the Gaussian curl-free kernel we have,K0(δ) = −∇∇T k0(δ) and the associated
feature map is Φ(x) =

⊕D
j=1 exp(−i〈x, ωj〉)ω∗

j . In the same spirit we can define a linear operator

P curl
x : θ 7→ vec

 D∑
j=1

φ̃(x)∗jΘjωj

 ,

such that h(x) = P curl
x θ = Φ̃(x)∗θ. Here the computation time for a prediction is O(Dp) and uses O(D)

memory.

Div-free kernel For the Gaussian divergence-free kernel, K0(δ) = (∇∇T − I∆)k0(δ) and Φ(x) =⊕D
j=1 exp(−i〈x, ωj〉)(I − ω∗

jωj)
1/2. Hence, we can define a linear operator

P div
x : θ 7→ vec

 D∑
j=1

φ̃(x)∗jΘj(Id − ωjω
∗
j )

1/2

 ,

such that h(x) = P div
x θ = Φ̃(x)∗θ. Here the computation time for a prediction is O(Dp2) and uses

O(Dp2) memory.
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Feature map Px : θ 7→ P ∗
x : y 7→ P ∗

xPx : θ 7→

Φdec(x) vec(φ̃(x)∗ΘB∗) vec(φ̃(x)y∗B) vec(φ̃(x)φ̃(x)∗ΘB∗B)

Φcurl(x) vec
(∑D

j=1 φ̃(x)
∗
jΘjωj

) ⊕D
j=1 φ̃(x)jy

∗ωj vec
(
φ̃(x)φ̃(x)∗

(⊕D
j=1Θj‖ωj‖2

))
Φdiv(x) vec

(∑D
j=1 φ̃(x)

∗
jΘj(Id − ωjω

∗
j )

1/2
) ⊕D

j=1 φ̃(x)jy
∗(Id − ωjω

∗
j )

1/2 vec
(
φ̃(x)φ̃(x)∗

(⊕D
j=1Θj(Id − ωjω

∗
j )
))

Table 1: fast-operator for different Feature maps.

Feature map Px P ∗
x P ∗

xPx

Φdec(x) O(D + pp′) O(Dp′ + pp′) O(D2 +Dp′2)
Φcurl(x) O(Dp) O(Dp) O(D2p+Dp)
Φdiv(x) O(Dp2) O(Dp2) O(D2p+Dp2)

Table 2: Time complexity to compute different Feature maps with fast-operators (for one
point x).

D.2 Simulated dataset
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Figure 7: Synthetic data used to train the curl-free and divergence free ORFF and OVK.

We also tested our approach when the output data are corrupted with a Gaussian noise with arbitrary
covariance. Operator-valued kernels-based models as well as their approximations are in this case more
appropriate than independent scalar-valued models. We generated a dataset AN

dec = (X ,Y) adapted to
the decomposable kernel withN points xi ∈ X ⊂ R20 to yi ∈ Y ⊂ R20, where the outputs have a low-rank.
The inputs where drawn randomly from a uniform distribution over the hypercube X = [−1; 1]20. To
generate the outputs we constructed an ORFF model from a decomposable kernel K0(δ) = Ak0(δ), where
A is a random positive semi-definite matrix of size 20×20, rank 1 and ‖A‖2 = 1 and k0 is a Gaussian kernel
with hyperparameter γ = 1/(2σ2). We choose σ to be the median of the pairwise distances over all points
of X (Jaakkola’s heuristic Jaakkola et al. (1999)). Then we generate a parameter vector for the model
θ by drawing independent uniform random variable in [−1; 1] and generate N outputs yi = Φ̃D(xi), xi ∈
X , yi ∈ Y, i ∈ {1 . . . N}. We chose D = 104 relatively large to avoid introducing too much noise due to
the random sampling of the Fourier Features. We compare the exact kernel method OVK with its ORFF
approximation on the dataset An

dec with additive non-isotropic Gaussian noise: ynoisei = Φ̃D(xi) + εi
where εi ∼ N (0,Σ) and ‖Σ‖2 =

√
V[yi]. We call the noisy dataset AN

dec,noise = (X ,Ynoise)dec,noise). The
results are given in table 3, where the reported error is the root mean-squared error.
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N ORFF OVK ORFF NOISE OVK NOISE

102 9.21 · 10−2 ± 4 · 10−3 4.36 · 10−2 ± 7 · 10−3 1.312 · 10−1 ± 1 · 10−2 1.222 · 10−1 ± 9 · 10−2

103 5.97 · 10−2 ± 2 · 10−4 2.13 · 10−2 ± 8 · 10−4 1.085 · 10−1 ± 2 · 10−2 0.990 · 10−1 ± 4 · 10−2

104 3.56 · 10−2 ± 5 · 10−4 1.01 · 10−2 ± 1 · 10−4 .876 · 10−1 ± 3 · 10−3 0.825 · 10−1 ± 2 · 10−3

105 2.89 · 10−2 ± 7 · 10−4 N/A .717 · 10−1 ± 3 · 10−3 N/A

Table 3: RMSE, average of 10 runs on synthetic data.
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