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CHAPTER 1
Summary

1.1 Introduction

Anomaly, from Greek ανωµαλια, asperity, irregular, not the same (an-homalos), refers to a
gap, a deviation with respect to some norm or basis, reflecting the expected behavior. We
call anomaly the object inducing a gap, the observation which deviates from normality. In
various fields, the following situation occurs: an expert aims at predicting a phenomenon
based on previous observations. The most basic case is when one wants to predict some binary
characteristic of some new observations/records, given previous ones. For instance one can
think of a doctor aiming to predict if an incoming patient has a fixed pathology or not, using
previous patients record (such as age, history, gender, blood pressure) associated with their true
label (having the pathology or not). This case is an example of binary classification, where the
doctor aims to find a rule to predict the label of a new patient (the latter being characterized
by its record). This rule is called a classifier and it has to be built, or trained, on previous
records. Intuitively, the classifier will predict the same diagnosis for similar records, in a sense
that should be learned accurately.

Two cases can be distinguished. If labels of previous patients are known/available, i.e. previous
patients are known to be sick or healthy: the classification task is said to be supervised. If
training labels are unknown, the classification is said unsupervised. Following our example,
the doctor has to find two patterns (or clusters), healthy/sick, each containing similar patient
records.

Anomaly detection occurs when one label is highly under-represented for training, for instance
if very few patients have the pathology in the training database. Thus, supervised anomaly
detection boils down to rare class mining, namely supervised classification on highly unbal-
anced classes. As to unsupervised anomaly detection (also simply called outlier detection), it
generally assumes that the database has a hidden ‘normal’ model, and anomalies are observa-
tions which deviate from this model. The doctor wants to find records which deviate from the
vast majority of those of his previous patients. His task is in some way simplified if he knows
all of its previous patients to be healthy: it is easier for him to learn the ‘normal’ model, i.e. the
typical record of a healthy patient, to be confronted with new records. This is the so-called
novelty detection framework (also called one-class classification or semi-supervised anomaly
detection), where the training database only contains normal instances.

This chapter is organized as follows. First in Section 1.2, the anomaly detection task is for-
mally introduced as well as the concept of scoring function. Two criteria for ‘being a good
scoring function’ are presented in Section 1.3, allowing an M-estimation approach. Section 1.4
focuses on extreme value theory (EVT) to gain in accuracy on extreme regions. It introduces
the stable tail dependence function (STDF), to estimate the dependence structure of rare events
(Section 1.4.1) and shows that multivariate EVT can be useful to produce scoring functions

1



2 Chapter 1. Summary

accurate on low probability regions (Section 1.4.2). Section 1.5 gathers two contributions to be
submitted addressing the evaluation of unsupervised anomaly detection from a practical point
of view (Section 1.5.1), and the extension of random forests to the one-class setting (Sec-
tion 1.5.2). Section 1.6 presents contributions relative to a widely used open-source machine
learning library. Section 1.7 details the scientific output and concludes.

Notations Throughout this document, N denotes the set of natural numbers while R and R+

respectively denote the sets of real numbers and non-negative real numbers. Arbitrary sets
are denoted by calligraphic letters such as G, and |G| stands for the number of elements in
G. We denote vectors by bold lower case letters. For a vector x ∈ Rd and i ∈ {1, . . . , d},
xi denotes the ith component of x. The inner product between two vectors is denoted by
〈·, ·〉. ‖ · ‖ denotes an arbitrary (vector or matrix) norm and ‖ · ‖p the Lp norm. Throughout
this thesis, P[A] denotes the probability of the event A ∈ Ω, the underlying probability space

being (Ω,F ,P). We denote by E[X] the expectation of the random variable X . X
d
= Y

means that X and Y are equal in distribution and Xn
d→ Y means that (Xn) converges to Y

in distribution. We often use the abbreviation X1:n to denote an i .i .d . sample (X1, . . . ,Xn).
A summary of the notations is given in Table 1.1.

1.2 Anomaly Detection, Anomaly Ranking and Scoring Functions

From a probabilistic point of view, there are different ways of modeling normal and abnor-
mal behaviors, which leads to different methodologies. One natural probabilistic model is to
assume two different generating processes for normal and abnormal data. Normal data (resp.
abnormal data) are generated according to some distribution F (resp. G). The general un-
derlying distribution is then a mixture of F and G. The goal is to find out whether a new
observation x has been generated from F , or from G. The optimal way to resolve theoretically
this problem is the likelihood ratio test, also called Neyman-Pearson test. If (dF/dG)(x) > t
with some t > 0 threshold, then x has been drawn from F . Otherwise, x has been drawn
from G. This boils down to estimating the density level set {x, (dF/dG)(x) > t} (Schölkopf
et al., 2001; Steinwart et al., 2005; Scott & Nowak, 2006; Vert & Vert, 2006). As anomalies
are very rare, their structure cannot be observed in the data, in particular their distribution G.
It is common and convenient to replace G in the problem above by the Lebesgue measure, so
that it boils down to estimating density level set of F (Schölkopf et al., 2001; Scott & Nowak,
2006; Vert & Vert, 2006).

This comes back to assume that anomalies are uniformly distributed on the support of the
normal distribution. This assumption is thus implicitly made by a majority of works on novelty
detection. We observe data in Rd from the normal class only, with an underlying distribution
F and with a density f : Rd → R. The goal is to identify characteristics of this normal class,
such as its support {x, f(x) > 0} or some density level set {x, f(x) > t} with t > 0 close to
0.

This one-class classification problem is different than distinguishing between several classes
as done in standard classification. Also, unsupervised anomaly detection is often viewed as
a one-class classification problem, where training data are polluted by a few elements of the
abnormal class: it appeals for one-class algorithms robust to anomalies.

A natural idea for estimating density level sets is to compute an estimate of the density and
to consider the associated plug-in density level sets (Tsybakov, 1997; Cuevas & Fraiman,



Chapter 1. Summary 3

Notation Description

c.d.f. cumulative distribution function
r.v. random variable
R Set of real numbers
R+ Set of nonnegative real numbers
Rd Set of d-dimensional real-valued vectors
Leb(·) Lebesgue measure on R or Rd

(·)+ positive part
∨ maximum operator
∧ minimum operator
N Set of natural numbers, i.e., {0, 1, . . . }
G An arbitrary set
|G| Number of elements in G

x An arbitrary vector
x < y component-wise vector comparison
m (for m ∈ R) vector (m, . . . ,m)

x < m means x < m

xj The jth component of x
δa Dirac mass at point a ∈ Rd

⌊·⌋ integer part
〈·, ·〉 Inner product between vectors
‖ · ‖ An arbitrary norm
‖ · ‖p Lp norm
A∆B symmetric difference between sets A and B

(Ω,F ,P) Underlying probability space
S functions s : Rd → R+ integrable w.r.t. Lebesgue measure (scoring functions)
d
→ Weak convergence of probability measures or r.v.
X A r.v. with values in Rd

1E indicator function event E
Y(1) ≤ . . . ≤ Y(n) order statistics of Y1, . . . , Yn

X1:n An i .i .d . sample (X1, . . . ,Xn)

P[·] Probability of event
E[·] Expectation of random variable
Var[·] Variance of random variable

TABLE 1.1: Summary of notation.

1997; Baillo et al., 2001; Baillo, 2003; Cadre, 2006; Rigollet & Vert, 2009; Mason & Polonik,
2009). The density is generally estimated using non-parametric kernel estimator or maximum
likelihood estimator from some parametric family of functions. But these methods does not
scale well with the dimension. They try somehow to capture more information than needed
for the level set estimation task, such as local properties of the density which are useless here.
Indeed, it turns out that for any increasing transform T , the level sets of T ◦f are exactly those
of f . Thus, it suffices to estimate any representative of the class of all increasing transforms
of f , to obtain density level sets estimates. Intuitively, it is enough to estimate the pre-order
(the scoring) induced by f on Rd. Let us define a scoring function as any measurable function
s : Rd → R+ integrable w.r.t. the Lebesgue measure Leb(.), and S the space of all scoring
functions. Any scoring function defines a pre-order on Rd and thus a ranking on a set of new
observations. This ranking can be interpreted as a degree of abnormality, the lower s(x), the
more abnormal x. Note incidentally that most anomaly detection algorithms return more than
a binary label, normal/abnormal. They return a scoring function, which can be converted to a
binary prediction, typically by imposing some threshold based on its statistical distribution.
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Suppose we are interested in learning a scoring function s whose induced pre-order is ‘close’
to that of f , or equivalently whose induced level sets are close to those of f . The problem is to
turn this notion of proximity into a criterion C, optimal scoring functions s∗ being then defined
as those optimizing C. In the density estimation framework, the uniform difference ‖f−f̂‖∞ is
a common criterion to assess the quality of the estimation. We would like a similar criterion but
which is invariant by increasing transformation of the output f̂ . In other words, the criterion
should be defined such that the collection of level sets of an optimal scoring function s∗(x)
coincides with that related to f , and any increasing transform of the density should be optimal
regarding C. More formally, we are going to consider CΦ(s) = ‖Φ(s) − Φ(f)‖ (instead of
‖s−f‖) with Φ : R → R+ verifying Φ(T ◦s) = Φ(s) for any scoring function s and increasing
transform T . Here Φ(s) denotes either the mass-volume curve MVs of s or its excess-mass
curve EMs, which are defined in the next section.

This criterion which measures the quality of a scoring function is then a tool for building/learn-
ing a good scoring function. According to the Empirical Risk Minimization (ERM) paradigm,
a scoring function is built by optimizing an empirical version Cn(s) of the criterion over an
adequate set of scoring functions S0 of controlled complexity (e.g. a class of finite VC dimen-
sion).

The next section describes two criteria, which are functional due to the global nature of the
problem just like the Receiver Operating Characteristic (ROC) and Precision-Recall (PR)
curves, and which are admissible with respect to the requirements listed above. These func-
tional criteria extend somehow the concept of ROC curve to the unsupervised setup.

Remark 1.1. Terminology: anomaly detection, anomaly ranking.
Strictly speaking, criteria we are looking for are anomaly ranking criteria, in the same way
the ROC curve is basically a criterion for bipartite ranking. In practice as mentioned above,
all the algorithms dealing with anomalies are candidates for the anomaly ranking task. They
all produce a ranking/scoring function, even the ones which originally deal with the ‘anomaly
classification’ framework, i.e. seek to be optimal on a single level set or w.r.t. a fixed false
positive rate. In the literature, the ‘anomaly detection’ terminology is widely used, instead
of the more precise ‘anomaly ranking’ one. For instance, Liu et al. (2008) write ‘The task of
anomaly detection is to provide a ranking that reflects the degree of anomaly’. In this work,
we similarly make the convention that anomaly detection refers to anomaly ranking: if labels
are available for the evaluation step, the goal is to maximize the area under the ROC curve. If
no labeled data is available, the goal is to maximize the alternative criteria defined in the next
section.

1.3 M-estimation and criteria for scoring functions

This section is a summary of Chapter 5, which is based on previous work published in Goix
et al. (2015c). We provide a brief overview of the mass-volume curve criterion introduced
in Clémençon & Jakubowicz (2013), which is based on the notion of minimum volume sets.
We then exhibit the main drawbacks of this approach, and propose an alternative criterion, the
excess-mass curve to circumscribe these drawbacks.
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1.3.1 Minimum Volume sets

The notion of minimum volume set (Polonik (1997); Einmahl & Mason (1992)) has been
introduced to describe regions where a multivariate r.v. X ∈ Rd takes its values with high-
est/smallest probability. Let α ∈ (0, 1), a minimum volume set Γ∗α of mass at least α is any
solution of the constrained minimization problem

min
Γ borelian

Leb(Γ) subject to P(X ∈ Γ) ≥ α, (1.1)

where the minimum is taken over all measurable subsets Γ of Rd. It can be shown that every
density level set is a minimum volume set for a specific mass target, and that the reverse is true
if the density has no flat part. In the remaining of this section we suppose that F has a density
f(x) w.r.t. the Lebesgue measure on Rd satisfying the following assumptions:

A1 The density f is bounded.

A2 The density f has no flat parts: ∀c ≥ 0, P{f(X) = c} = 0 .

Under the hypotheses above, for any α ∈ (0, 1), there exists a unique minimum volume set
Γ∗α, whose mass is equal to α exactly. The (generalized) quantile function is then defined by:

∀α ∈ (0, 1), λ∗(α) := Leb(Γ∗α).

Additionally, the mapping λ∗ is continuous on (0, 1) and uniformly continuous on [0, 1 − ǫ]
for all ǫ ∈ (0, 1) – when the support of F is compact, uniform continuity holds on the whole
interval [0, 1].

Estimates Γ̂∗α of minimum volume sets are built by replacing the unknown probability dis-
tribution F by its empirical version Fn = (1/n)

∑n
i=1 δXi and restricting optimization to a

collection A of borelian subsets of Rd. A is assumed to be rich enough to include all density
level sets, or at least reasonable approximates of the latter. In Polonik (1997), limit results are
derived for the generalized empirical quantile process {Leb(Γ̂∗α)−λ∗(α)} (under the assump-
tion in particular that A is a Glivenko-Cantelli class for F ). In Scott & Nowak (2006), it is
proposed to replace the level α by α − φn where φn plays the role of tolerance parameter (of
the same order as the supremum supΓ∈A |Fn(Γ)−F (Γ)|), the complexity of the class A being
controlled by the VC dimension, so as to establish rate bounds. The statistical version of the
Minimum Volume set problem then becomes

min
Γ∈A

Leb(Γ) subject to Fn(Γ) ≥ α− φn.

The ensemble A of borelian subsets of Rd ideally offers both statistical and computational ad-
vantages; allowing for fast search as well as being sufficiently complex to capture the geometry
of target density level sets – i.e. the ‘model bias’ infΓ∈A Leb(Γ∆Γ∗α) should be small.

1.3.2 Mass-Volume curve

Let s ∈ S a scoring function. As defined in Clémençon & Jakubowicz (2013); Clémençon &
Robbiano (2014), the mass-volume curve of s is the plot of the mapping

MVs : α ∈ (0, 1) 7→ MVs(α) = λs ◦ α−1s (α),
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where H−1 denotes the pseudo-inverse of any cdf H : R → (0, 1) and where αs and λs are
defined by

αs(t) := P(s(X) ≥ t),

λs(t) := Leb({x ∈ Rd, s(x) ≥ t}) .
(1.2)

This induces a partial ordering on the set of all scoring functions, in the sense that s is pre-
ferred to s′ if MVs(α) ≤ MVs′(α) for all α ∈ (0, 1). Also, the mass-volume curve re-
mains unchanged when applying any increasing transformation on s. It can be proven that
MV ∗(α) ≤ MVs(α) for all α ∈ (0, 1) and any scoring function s, where MV ∗(α) is the
optimal value of the constrained minimization problem (1.1), namely

MV ∗(α) = Leb(Γ∗α) = min
Γ mes.

Leb(Γ) subject to P(X ∈ Γ) ≥ α . (1.3)

Under assumptions A1 and A2, one may show that the curve MV ∗ is actually a MV
curve, that is related to (any increasing transform of) the density f namely: MV ∗ = MVf .
The objective is then to build a scoring function ŝ depending on training data X1, ...Xn

such that MVŝ is (nearly) minimum everywhere, i.e. minimizing ‖MVŝ − MV ∗‖∞ :=
supα∈[0,1] |MVŝ(α)−MV ∗(α)|.

x

f(x)

Q(f, α)

Γ∗α

MV ∗(α)

α

FIGURE 1.1: Mass-Volume at level α

The way of doing it consists in preliminarily estimating a collection of minimum volume sets
related to target masses 0 < α1 < . . . < αK < 1 forming a subdivision of (0, 1) based
on training data so as to define s =

∑
k 1{x∈Γ̂∗

αk
}. The analysis is done under adequate

assumptions (related to G, the perimeter of the Γ∗αk
’s and the subdivision step in particular)

and for an appropriate choice of K = Kn. However, by construction, learning rate bounds are
rather slow (of the order n−1/4 namely) and cannot be established in the unbounded support
situation.

But the four main drawbacks of this mass-volume curve criterion are the following.

1) When used as a performance criterion, the Lebesgue measure of possibly very complex
sets has to be computed.

2) When used as a performance criterion, there is no simple manner to compare MV-curves
since the area under the curve is potentially infinite.

3) When used as a learning criterion (in the ERM paradigm), it produces level sets which
are not necessarily nested, and then inaccurate scoring functions.

4) When used as a learning criterion, the learning rates are rather slow (of the order n−1/4

namely), and cannot be established in the unbounded support situation.
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In the following section, and as a contribution of this thesis, an alternative functional crite-
rion is proposed, obtained by exchanging objective and constraint functions in (1.1). The
drawbacks of the mass-volume curve criterion are resolved excepting the first one, and it is
shown that optimization of an empirical discretized version of this performance measure yields
scoring rules with convergence rates of the order OP(1/

√
n). In addition, the results can be

extended to the situation where the support of the distribution F is not compact. Also, when
relaxing the assumption made in the mass-volume curve analysis that all level sets are included
in our minimization class A, a control of the model bias is established. Last but not least, we
derive (non-statistical) theoretical properties verified by this criterion, which corroborate its
adequacy as a metric on pre-orders/level sets summarized in scoring functions.

1.3.3 The Excess-Mass criterion

We propose an alternative performance criterion which relies on the notion of excess mass and
density contour clusters, as introduced in the seminal contribution Polonik (1995). The main
idea is to consider a Lagrangian formulation of a constrained minimization problem, obtained
by exchanging constraint and objective in (1.1): for t > 0,

max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)} . (1.4)

We denote by Ω∗t any solution of this problem. This formulation offers certain computational
and theoretical advantages both at the same time: when letting (a discretized version of) the
Lagrangian multiplier t increase from 0 to infinity, one may easily obtain solutions of empirical
counterparts of (1.4) forming a nested sequence of subsets of the feature space, avoiding thus
deteriorating rate bounds by transforming the empirical solutions so as to force monotonicity.
The optimal Excess-Mass curve related to a given probability distribution F is defined as the
plot of the mapping

t > 0 7→ EM∗(t) := max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)}.

Equipped with the notation above, we have: EM∗(t) = P(X ∈ Ω∗t )− tLeb(Ω∗t ) for all t > 0.
Notice also that EM∗(t) = 0 for any t > ‖f‖∞ := supx∈Rd |f(x)|. The Excess-Mass curve
of s ∈ S w.r.t. the probability distribution F of a random variable X is the plot of the mapping

EMs : t ∈ [0,∞[ 7→ sup
A∈{(Ωs,l)l>0}

{P(X ∈ A)− tLeb(A)}, (1.5)

where Ωs,t = {x ∈ Rd, s(x) ≥ t} for all t > 0. One may also write EMs in terms of λs and
αs defined in (1.2), EMs(t) = supu>0 αs(u) − tλs(u). Finally, under assumption A1, we
have EMs(t) = 0 for every t > ‖f‖∞.

x

f(x)

t

Ω∗t

EM(t)

Figure 2: Excess-Mass curve
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Maximizing EMs can be viewed as recovering a collection of subsets (Ω∗t )t>0 with maximum
mass when penalized by their volume in a linear fashion. An optimal scoring function is then
any s ∈ S with the Ω∗t ’s as level sets, for instance any scoring function of the form

s(x) =

∫ +∞

t=0
1x∈Ω∗

t
a(t)dt,

with a(t) > 0 (observe that s(x) = f(x) for a ≡ 1). The mapping EMs is non increasing on
(0,+∞), takes its values in [0, 1] and satisfies, EMs(t) ≤ EM∗(t) for all t ≥ 0. In addition,
for t ≥ 0 and any ǫ > 0, we have

inf
u>0

ǫLeb({s > u}∆ǫ{f > t}) ≤ EM∗(t)− EMs(t) ≤ ‖f‖∞ inf
u>0

Leb({s > u}∆{f > t})

with {s > u}∆ǫ{f > t} := {f > t + ǫ} \ {s > u} ⊔ {s > u} \ {f > t − ǫ}. Thus
the quantity EM∗(t) − EMs(t) measures how well level sets of s can approximate those of
the underlying density. Under some reasonable conditions (see Goix et al. (2015c), Prop.1),
we also have for ǫ > 0,

sup
t∈[ǫ,‖f‖∞]

|EM∗(t)− EMs(t)| ≤ C inf
T∈T

‖f − T ◦ s‖∞

where the infimum is taken over the set T of all measurable increasing transforms T : R+ →
R+. The previous inequalities reveal that ‖EM∗ − EMs‖∞ can be interpreted as a pseudo
distance either between the level sets of s and those of the true density f , or between the
pre-orders induced by s and f .

The concept of EM-curve provides a simple way to compare scoring functions but optimizing
such a functional criterion is far from straightforward. As proposed in Clémençon & Jakubow-
icz (2013) for the MV criterion, optimization is done over some representative class of scoring
functions, hopefully rich enough to provide a good approximation (small model bias) while
simple enough to control the convergence rate. Here we consider scoring functions of the form

sN (x) :=

N∑

k=1

ak1x∈Ω̂tk
, with Ω̂tk ∈ G

where G is a VC-class of subset of Rd. We arbitrary take ak := (tk − tk+1) so that the Ω̂tk ’s
correspond exactly to tk level sets {s ≥ tk}. Then, maximizing the Excess-Mass functional
criterion is done by sequentially resolving, for k = 1, . . . , N ,

Ω̂tk ∈ argmax
Ω∈G

1

n

n∑

i=1

1Xi∈Ω − tkLeb(Ω).

The Ω̂tk ’s solution of these optimization problems can always be chosen in such a way that
they are nested (unlike the analogous optimization problem for the mass-volume criterion).
In other words, an inclusion constraint can be incorporated into the previous optimization
problem, without affecting the quality of the solution picked up. It allows to avoid forcing
the solutions to be nested, yielding stronger convergence rates. In the mass-volume criterion
M-estimation framework, assumptions are made stipulating that the support of the distribution
is compact, and that the VC-class G contains the true density level sets. Here we relax these
assumptions, the first one by choosing adaptive levels tk, and the second one by deriving a bias
study. This is detailed in Chapter 5.



Chapter 1. Summary 9

1.4 Accuracy on extreme regions

1.4.1 Extreme Values Analysis through STDF estimation

This section is a summary of Chapter 6, which is based on previous work published in Goix
et al. (2015b).

Recall that scoring functions are built by approaching density level sets/minimum volume
sets of the underlying ‘normal’ density. As mentioned previously, for an anomaly detection
purpose, we are interested in being accurate on level sets corresponding to high quantiles,
namely with level t close to 0 – equivalently being accurate on minimum volume sets with
mass constraint α close to 1. In the univariate case, suppose we want to consider the (1− p)th

quantile of the distribution F of a random variable X , for a given exceedance probability p,
that is xp = inf{x ∈ R, P(X > x) ≤ p}. For moderate values of p, a natural empirical
estimate is xp,n = inf{x ∈ R, 1/n

∑n
i=1 1Xi>x ≤ p}. However, if p is very small, the

finite sample X1, . . . , Xn contains insufficient information and xp,n becomes irrelevant. This
problem transfers in the multivariate case to learning density level sets with very low level,
or equivalently scoring functions inducing such level sets. Extreme value theory specially
addresses such issues, in the one-dimensional as well as in the multi-dimensional setup.

Preliminaries. Extreme Value Theory (EVT) develops models for learning the unusual
rather than the usual. These models are widely used in fields involving risk management
like finance, insurance, telecommunication or environmental sciences. One major application
of EVT is to provide a reasonable assessment of the probability of occurrence of rare events.

To illustrate this point, suppose we want to manage the risk of a portfolio containing d different
assets, X = (X1, . . . , Xd). A fairly general purpose is then to evaluate the probability of
events of the kind {X1 ≥ x1 or . . . or Xd ≥ xd}, for large multivariate thresholds x =
(x1, . . . , xd). Under not too stringent conditions on the regularity of X’s distribution, EVT
shows that for large enough thresholds,

P{X1 ≥ x1 or . . . or Xd ≥ xd} ≃ l(p1, . . . , pd),

where l is the stable tail dependence function (STDF) and the pj’s are the marginal exceedance
probabilities, pj = P(Xj ≥ xj). The functional l characterizes the dependence among ex-
tremes. The joint distribution (over large thresholds) can thus be recovered from the knowl-
edge of the marginal distributions together with the STDF l. In practice, l can be learned
from ‘moderately extreme’ data, typically the k ‘largest’ ones among a sample of size n, with
k ≪ n.

Recovering the pj’s can be done following a well paved way: in the univariate case, EVT
essentially consists in modeling the distribution of the maxima (resp. the upper tail) as a
generalized extreme value distribution, namely an element of the Gumbel, Fréchet or Weibull
parametric families (resp. by a generalized Pareto distribution).

In contrast, in the multivariate case, there is no finite-dimensional parametrization of the de-
pendence structure. The latter being characterized by the STDF, estimating this functional
is one of the main issues in multivariate EVT. Asymptotic properties of the empirical STDF

have been widely studied, see Huang (1992); Drees & Huang (1998); Embrechts et al. (2000);
De Haan & Ferreira (2007) for the bivariate case, and Qi (1997); Einmahl et al. (2012) for the
general multivariate case under smoothness assumptions.
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However, no bounds exist on the finite sample error. The contribution summarized in the next
section and published in Goix et al. (2015b) derives such non-asymptotic bounds. Our results
do not require any assumption other than the existence of the STDF.

Learning the dependence structure of rare events. Classical VC inequalities aim at
bounding the deviation of empirical from population quantities on relatively simple classes
of sets, called VC classes. These classes typically cover the support of the underlying distri-
bution. However, when dealing with rare events, it is of great interest to have such bounds
on a class of sets which only covers a small probability region and thus contains (very) few
observations. This yields sharper bounds, since only differences between very small quantities
are involved. The starting point of this analysis is the following VC-inequality stated below
and proved in Chapter 6.

Theorem 1.2. Let X1, . . . ,Xn be i .i .d . realizations of a r.v. X, a VC-class A with VC-
dimension VA. Consider the class union A = ∪A∈AA, and let p = P(X ∈ A). Then there is
an absolute constant C so that for all 0 < δ < 1, with probability at least 1− δ,

sup
A∈A

∣∣∣∣∣P
[
X ∈ A

]
− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ C

[√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

]
.

The main idea is as follows. The empirical estimator of the STDF is based on the empirical
measure of ‘extreme’ regions, which are hit only with low probability. It is thus enough to
bound maximal deviations on such low probability regions. The key consists in choosing an
adaptive VC class, which only covers the latter regions, and on the other hand, to derive VC-
type inequalities that incorporate p, the probability of hitting the class at all. The bound we
obtain on the finite sample error is then:

Theorem 1.3. Let T be a positive number such that T ≥ 7
2(

log d
k +1), δ such that δ ≥ e−k and

let k = k(n) be a sequence of positive integers such that k → ∞ and k = o(n) as n → ∞.
Then there is an absolute constant C such that for each n > 0, with probability at least 1− δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Cd

√
T

k
log

d+ 3

δ
+ bias(k, n, T ),

where l is the STDFand ln its standard empirical version. The second term in the bound is a
bias stemming from the asymptotic nature of l.

In this section, we have introduced and studied, in a non-parametric setting, a particular
functional characterizing the extreme dependence structure. One other convenient (non-
parametric) characterization of extreme dependence in the framework of multivariate EVT
is the angular measure, which provides direct information about the probable ‘directions’ of
extremes, that is, the relative contribution of each feature/coordinate of the ‘largest’ observa-
tions. In many applications, it is more convenient to work with the angular measure itself.
The latter gives more direct information on the dependence structure and is able to reflect
structural simplifying properties (e.g. sparsity as detailed below) which would not appear in
extreme value copulas or in the STDF which are integrated version of the angular measure.
However, non-parametric modeling of the angular measure faces major difficulties, stemming
from its potentially complex structure, especially in a high dimensional setting. Further, from
a theoretical point of view, non-parametric estimation of the angular measure has only been
studied in the two dimensional case, in Einmahl et al. (2001); Einmahl & Segers (2009), in an
asymptotic framework. As another contribution of this thesis, the section below summarizes a
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novel methodology aiming at exhibiting a sparsity pattern within the dependence structure of
extremes.

1.4.2 Sparse Representation of Multivariate Extremes

This section is a summary of Chapter 7, which is based on previous work published in Goix
et al. (2016c) and on its long version Goix et al. (2016b) under review.

EVT has been intensively used in anomaly detection in the one-dimensional situation, see
for instance Roberts (1999, 2000); Clifton et al. (2011, 2008); Lee & Roberts (2008). In the
multivariate setup, however, there is –to the best of our knowledge– no anomaly detection
method relying on multivariate EVT. Until now, the multidimensional case has only been
tackled by means of extreme value statistics based on univariate EVT. The major reason is the
difficulty to scale up existing multivariate EVT models with the dimensionality. In the present
work we bridge the gap between the practice of anomaly detection and multivariate EVT by
proposing a method which is able to learn a sparse ‘normal profile’ of multivariate extremes
and, as such, may be implemented to improve the accuracy of any usual anomaly detection
algorithm.

Context: multivariate extreme values in large dimension. Parametric or semi-parametric
estimation of the structure of multivariate extremes is relatively well documented in the sta-
tistical literature, see e.g. Coles & Tawn (1991); Fougères et al. (2009); Cooley et al. (2010);
Sabourin & Naveau (2014) and the references therein. However, restrictive structural assump-
tions have to be made, stipulating e.g. that only some pre-definite subgroups of components
may be concomittantly extremes, or, on the contrary, that all of them must be. In addition,
their practical use is restricted to moderate dimensional problems (say, d ≤ 10), otherwise
simplifying modeling choices are needed, as e.g. in Stephenson (2009)). Finally, uncertainty
assessment concerning the output of these models is made under the hypothesis that the train-
ing set is ‘asymptotic’, in the sense that one assumes that, above a fixed high threshold, the
data are exactly distributed according to the limit distribution of extremes. In other words, the
modeling error is ignored.

Non-parametric estimation of the angular measure has only been treated in the two dimensional
case, in Einmahl et al. (2001); Einmahl & Segers (2009), in an asymptotic framework. Here
we extend the non-asymptotic study on STDF estimation (previous section) to the angular mea-
sure of extremes, restricted to a well-chosen class of sets, corresponding to lower-dimensional
regions of the space. The objective is to learn a representation of the angular measure, rough
enough to control the variance in high dimension and accurate enough to gain information
about the ‘probable directions’ of extremes, both at the same time. This yields a –first– non-
parametric estimate of the angular measure in any dimension, restricted to a class of subcones,
with a non asymptotic bound on the error. Note incidentally that this method can also be
used as a preprocessing stage, for dimensionality reduction purpose, before proceeding with a
parametric or semi-parametric estimation which could benefit from the structural information
issued in the first step. Such applications are beyond the scope of this thesis.

The framework we develop is non-parametric and lies at the intersection of support estima-
tion, density estimation and dimensionality reduction: it consists in learning the support of a
distribution (from training data), that can be decomposed into subcones, hopefully each of low
dimension and to which some mass is assigned, defining empirical versions of probability mea-
sures of specific extreme regions. It produces a scoring function defined and specially accurate
on extreme regions, which can thus be exploited to detect anomalies among extremes. Due to
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its moderate complexity –of order dn log n– this algorithm is suitable for the treatment of real
word large-scale learning problems, and experimental results reveal a significantly increased
performance on extreme regions compared with standard anomaly detection approaches.

In a wide range of situations, one may expect the occurrence of two phenomena:

1- Only a ‘small’ number of groups of components may be concomitantly extreme, so that only
a ‘small’ number of hyper-cubes (those corresponding to these subsets of indexes precisely)
have non zero mass (‘small’ is relative to the total number of groups 2d).

2- Each of these groups contains a limited number of coordinates (compared to the original
dimensionality), so that the corresponding hyper-cubes with non zero mass have small dimen-
sion compared to d.

The main purpose of this work is to introduce a data-driven methodology for identifying such
faces, so as to reduce the dimensionality of the problem and thus to learn a sparse representa-
tion of extreme behaviors. In case hypothesis 2- is not fulfilled, such a sparse ‘profile’ can still
be learned, but loses the low dimensional property of its supporting hyper-cubes. One major
issue is that real data generally do not concentrate on sub-spaces of zero Lebesgue measure.
This is circumvented by setting to zero any coordinate less than a threshold ǫ > 0, so that the
corresponding ‘angle’ is assigned to a lower-dimensional face.

More formally, Figures 1.2 and 1.3 represent the transformed input space, resulting from clas-
sical standardization of the margins. After this non-linear transform, the representation of
extreme data is linear and learned by estimating the mass on the sub-cones

Cα = {v ≥ 0, ‖v‖∞ ≥ 1, vj > 0 for j ∈ α, vj = 0 for j /∈ α},

or more precisely, the mass of the angular measure Φ on the corresponding sub-spheres

Ωα = {x ∈ Sd−1
∞ : xi > 0 for i ∈ α , xi = 0 for i /∈ α} = Sd−1

∞ ∩ Cα,

represented in Figure 1.2.

FIGURE 1.2: Truncated cones in 3D FIGURE 1.3: Truncated ǫ-cones in 2D

This is done using ǫ-thickened sub-cones Cǫ
α, corresponding to ǫ-thickened sub-spheres Ωǫ

α,
as shown in Figure 1.3 in the two-dimensional case. We thus obtain an estimate M̂ of the
representation

M = {Φ(Ωα) : ∅ 6= α ⊂ {1, . . . , d}}.
Theoretically, recovering the (2d − 1)-dimensional unknown vector M amounts to roughly
approximating the support of Φ using the partition {Ωα, α ⊂ {1, . . . , d}, α 6= ∅}, that is,
determine which Ωα’s have nonzero mass (and evaluating the mass Φ(Ωα)), or equivalently,
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which Φα’s are nonzero. This support estimation is potentially sparse (if a small number of Ωα

have non-zero mass, i.e. Phenomenon 1-) and potentially low-dimensional (if the dimensions
of the sub-spheres Ωα with non-zero mass are low, i.e. Phenomenon 2-).

Anomaly Detection. Our proposed algorithm, DAMEX for Detecting Anomalies with Ex-
tremes, learns M̂, a (possibly sparse and low-dimensional) representation of the angular mea-
sure, from which a scoring function can be defined in the context of anomaly detection. The
underlying assumption is that an observation is potentially abnormal if its ‘direction’ (after a
standardization of each marginal) is special regarding the other extreme observations. In other
words, if it does not belong to the (sparse) representation M̂. See Chapter 7 for details on how
the scoring function is defined from this representation. According to the benchmarks derived
in this chapter, DAMEX significantly improves the performance (both in term of precision and
of ROC curves) in extreme regions, inducing e.g. more vertical ROC curves near the origin.

Theoretical grounds. From the work on the STDF estimation summarized in the previous sub-
section 1.4.1, in particular from Theorem 1.2 and from the ideas used to prove Theorem 1.3,
we are able to derive some theoretical guaranties for this approach. Under non-restrictive as-
sumptions standard in EVT (existence of the angular measure and continuous marginal c.d.f.),
we obtain a non-asymptotic bound of the form

sup
∅6=α⊂{1, ..., d}

|M̂(α)−M(α)| ≤ Cd

(√
1

ǫk
log

d

δ
+Mdǫ

)
+ bias(ǫ, k, n),

with probability greater than 1−δ, where k = k(n) → ∞ with k(n) = o(n) can be interpreted
as the number of data considered as extreme. The bias term goes to zero as n → ∞, for any
fixed ǫ.

1.5 Heuristic approaches

The two contributions in this section are of heuristic nature and not yet supported by statis-
tically sound theoretical results. Although this ongoing work has not been published yet and
will certainly be completed in the near future, we believe that it has its place in our manuscript,
given the numerous convincing numerical experiments we carried out and the rationale behind
the approaches promoted we gave. These two contributions address two major challenges in
anomaly detection:

• How to evaluate unsupervised anomaly detection in practice?

• How to grow random forests with only one class available?

The first point has been partially addressed in Section 1.3 with MV and EM curves. However,
these two criteria have originally been introduced to build scoring functions via Empirical Risk
Minimization (ERM), and no study has been made on their use to evaluate scoring functions
as ROC or PR criteria do. Besides, their use to measure the quality of a scoring function sn
involves the computation of the Lebesgue measure Leb(sn ≥ u), which is very challenging in
high dimensional frameworks.

The two proposed approaches are heuristic-based, and no theoretical guarantees such as con-
sistency or convergence rates are derived. However, extensive benchmarks show the relevance
of these approaches.
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1.5.1 Evaluation of anomaly detection algorithms

This is a summary of Chapter 8, which is based on a workshop paper (Goix, 2016) and a work
to be submitted (Goix & Thomas, 2016).

When sufficient labeled data are available, classical criteria based on ROC (Provost et al.,
1997, 1998; Fawcett, 2006) or PR (Davis & Goadrich, 2006; Clémençon & Vayatis, 2009a)
curves can be used to compare the performance of unsupervised anomaly detection algorithms.
However, in many situations, few or no data are labeled. This calls for alternative criteria one
can compute on non-labeled data.

While excess-mass and mass-volume curves quantities have originally been introduced to build
scoring functions via Empirical Risk Minimization (ERM), the MV-curve has been used re-
cently for the calibration of the One-Class SVM (Thomas et al., 2015). When used to attest
the quality of some scoring function, the volumes induced become unknown and must be esti-
mated, which is challenging in large dimension if no prior knowledge on the form of these level
sets is available. Besides, the accuracy of EM or MV curves as evaluation criteria has not been
studied yet. Summarized in this section and as a contribution of this thesis, numerical perfor-
mance scores based on EM and MV criteria (that do not require labels) are empirically shown
to discriminate accurately (w.r.t. ROC or PR based criteria) between algorithms. A methodol-
ogy based on feature sub-sampling and aggregating is also described and tested. This extends
the use of these criteria to high-dimensional datasets and solves major drawbacks inherent to
standard EM and MV curves.

Recall that the MV and EM curves of a scoring function s can be written as

MVs(α) = inf
u≥0

Leb(s ≥ u) s.t. P(s(X) ≥ u) ≥ α (1.6)

EMs(t) = sup
u≥0

P(s(X) ≥ u) − tLeb(s ≥ u) (1.7)

for any α ∈ (0, 1) and t > 0. The optimal curves are MV ∗ = MVf = MVT◦f and
EM∗ = EMf = EMT◦f for any increasing transform T : Im(f) → R. As curves cannot be
trivially compared, consider the L1-norm ‖.‖L1(I) with I ⊂ R an interval. As MV ∗ = MVf is
below MVs pointwise, argmins ‖MVs−MV ∗‖L1(I) = argmin ‖MVs‖L1(I). We thus define
CMV (s) = ‖MVs‖L1(IMV ), which is equivalent to consider ‖MVs −MV ∗‖L1(IMV ) as men-
tioned in the introduction. As we are interested in evaluating accuracy on large density level-
sets, one natural interval IMV would be for instance [0.9, 1]. However, MV diverges in 1 when
the support is infinite, so that we arbitrarily take IMV = [0.9, 0.999]. The smaller is CMV (s),
the better is the scoring function s. Similarly, we consider CEM (s) = ‖EMs‖L1(IEM ), this
time with IEM = [0, EM−1(0.9)], where EM−1s (0.9) := inf{t ≥ 0, EMs(t) ≤ 0.9}, as
EMs(0) is finite (equal to 1).

As the distribution F of the normal data is generally unknown, MV and EM curves must be
estimated. Let s ∈ S and X1, . . . , Xn be an i.i.d. sample with common distribution F and
set Pn(s ≥ t) = 1

n

∑n
i=1 1s(Xi)≥t. The empirical MV and EM curves of s are then simply

defined as empirical version of (1.6) and (1.7),

M̂V s(α) = inf
u≥0

{Leb(s ≥ u) s.t. Pn(s ≥ u) ≥ α} (1.8)

ÊM s(t) = sup
u≥0

Pn(s ≥ u) − tLeb(s ≥ u) (1.9)
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Finally, we obtain the empirical EM and MV based performance criteria:

ĈEM (s) = ‖ÊM s‖L1(IEM ) IEM = [0, ÊM
−1

(0.9)], (1.10)

ĈMV (s) = ‖M̂V s‖L1(IMV ) IMV = [0.9, 0.999]. (1.11)

The methodology to scale the use of the EM and MV criteria to large dimensional data consists
in sub-sampling training and testing data along features, thanks to a parameter d′ controlling
the number of features randomly chosen for computing the (EM or MV) score. Replacement
is done after each draw of features F1, . . . , Fm. A partial score ĈMV

k (resp. ĈEM
k ) is computed

for each draw Fk using (1.10) (resp. (1.11)). The final performance criteria are obtained by
averaging these partial criteria along the different draws of features. This methodology is
described in Algorithm 1.

Algorithm 1 High-dimensional EM/MV: evaluate AD algorithms on high-dimensional data

Inputs: AD algorithm A, data set X = (xji )1≤i≤n,1≤j≤d, feature sub-sampling size d′,
number of draws m.
for k = 1, . . . ,m do

randomly select a sub-group Fk of d′ features
compute the associated scoring function ŝk = A

(
(xji )1≤i≤n, j∈Fk

)

compute ĈEM
k = ‖ÊM ŝk‖L1(IEM ) using (1.10) or ĈMV

k = ‖M̂V ŝk‖L1(IMV ) using (1.11)
end for
Return performance criteria:

ĈEM
high_dim(A) =

1

m

m∑

k=1

ĈEM
k (idem for MV)

Low-dimensional and high-dimensional EM/MV are tested w.r.t. three classical AD algo-
rithms. A wide range on real labeled datasets are used in the benchmark. Experiments show
that when one algorithm has better performance than another on some fixed dataset, according
to both ROC and PR AUCs, one can expect to recover it without using labels with an accuracy
of 82% in the novelty detection framework, and 77% in the unsupervised framework.

1.5.2 One-Class Random Forests

This is a summary of Chapter 9, which is based on work (Goix et al., 2016a) to be submitted.

Building accurate scoring functions by optimizing EM or MV criteria is very challenging
in practice, just as building classifiers by optimizing the ROC curve (Clémençon & Vayatis
(2010)) in the supervised framework. More work is needed for these methods to be efficient in
practice, particularly for the choice of the class of sets on which the optimization is done. In-
deed, this class is hopefully rich enough to provide a good approximation while simple enough
to control the convergence rate. This compromise is hard to achieve, especially in high dimen-
sion when no prior knowledge on the shape of the level sets is available. In this section, we
propose a heuristic approach to build scoring functions using Random Forests (RFs) (Breiman,
2001; Genuer et al., 2008; Biau et al., 2008; Biau & Scornet, 2016). More formally, we adapt
RFs to the one-class classification framework by introducing one-class splitting criteria.
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Standard RFs are estimators that fit a number of decision tree classifiers on different random
sub-samples of the dataset. Each tree is built recursively, according to a splitting criterion
based on some impurity measure of a node. The prediction is done by an average over each
tree prediction. In classification the averaging is based on a majority vote. Few attempts to
transfer the idea of RFs to one-class classification have already been made (Désir et al., 2012;
Liu et al., 2008; Shi & Horvath, 2012). No algorithm structurally extends (without second
class sampling and without alternative base estimators) RFs to one-class classification.

We introduce precisely such a methodology. It builds on a natural adaptation of two-class split-
ting criteria to the one-class setting, as well as an adaptation of the two-class majority vote.
In addition, it turns out that the one-class model promoted here corresponds to the asymptotic
behavior of an adaptive (with respect to the tree growing process) outliers generating method-
ology.

One-class Model with parameters (n, α). We consider a random variable X : Ω → Rd

w.r.t. a probability space (Ω,F ,P). The law of X depends on another r.v. y ∈ {0, 1}, verifying
P(y = 1) = 1− P(y = 0) = α. We assume that conditionally on y = 0, X follows a law F ,
and conditionally on y = 1 a law G:

X | y = 0 ∼ F, P(y = 0) = 1− α,

X | y = 1 ∼ G, P(y = 1) = α.

We model the one-class framework as follows. Among the n i .i .d . observations, we only
observe those with y = 0 (the normal behavior), namely N realizations of (X | y = 0), where
N is itself a realization of a r.v. N of law N ∼ Bin

(
n, (1 − α)

)
, the binomial distribution

with parameters (n, p). As outliers are not observed, we classically assume that G follows a
uniform distribution on the hyper-rectangle X containing all the observations, so that G has
a constant density g(x) ≡ 1/Leb(X ) on X . This assumption will be removed in the adaptive
approach, where no prior distribution is assumed for the outliers.

One-class empirical analogues of two-class impurity measures are then obtained by replac-
ing the quantities relative to the normal behavior by their empirical versions. The quantities
relative to the unobserved second class (abnormal behavior) are naturally expressed using the
uniform distribution assumption.

In this way, our one-class impurity improvement function corresponds to the two-class one,
where empirical second class quantities have been replaced by their expectation assuming a
uniform distribution.

But it also induces a major problem: those expectations, which are proportional to the volume
of the node at stake, become very small when going deeper in the tree. In the two-class
framework, the corresponding problem is when the second class is highly under-represented
in the neighborhood of the observations. As we assume the second class to be uniform on
a hyper-rectangle containing all the observations, this fact was expected, especially in large
dimension (curse of dimensionality). As the quantities relative to the second class are very
close to zero, one observes that the impurity criterion becomes constant when the split varies,
and then useless.

Adaptive approach. A solution is to chose adaptively (w.r.t. the volume of each node) the
number αn, which can be interpreted as the number of (hidden) outliers. Recall that neither n
nor α is observed in One-Class-Model(n, α) defined above.

The idea is to make α(t) → 1, n(t) → ∞ when the volume of node t goes to zero. In other
words, instead of considering one fixed general model One-Class-Model(n, α), we adapt it to
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each node t, considering One-Class-Model(n(t), α(t)) before searching the best split. We still
consider the N normal observations as a realization of this model. When growing the tree,
using One-Class-Model(n(t), α(t)) allows to maintain a non-negligible expected proportion
of outliers in the node to be split, even when its volume becomes close to zero. Of course,
constraints have to be made to ensure consistency between all these models. For instance,
recalling that the number N of normal observations is a realization of N following a Binomial
distribution with parameters (n, 1− α), a first natural constraint on

(
n(t), α(t)

)
is

(1− α)n =
(
1− α(t)

)
· n(t) for all t, (1.12)

so that the expectation of N remains unchanged. Then the asymptotic model (when the volume
of t goes to 0) consists in fact in assuming that the number N of normal data we observed is a
realization of a Poisson distribution P

(
(1− α)n

)
, and that an infinite number of outliers have

been hidden. In the two class framework, this corresponds to observing an infinite number of
outliers distributed closely around, outside and inside the support of the normal distribution,
breaking the curse of dimensionality when using uniformly distributed outliers (see Chapter 9
for details).

Remark 1.4 (Basic idea behind the adaptive approach). This work corresponds in fact to the
following simple idea that allows us to split a node without examples of the second class. Each
time we are looking for the best split for a node t, we simply replace (in the 2-class impurity
decrease to be maximized) the second class proportion in the left node tL by the proportion
expectation volume(tL)/volume(t) (idem for the right node). It ensures that one child node
tries to capture the maximum number of observations with a minimal volume, while the other
child looks for the opposite.

Remark 1.5 (No sampling). The corresponding sampling method is the following: for each
note t to be splitted containing nt observations (inliers), generate nt uniform outliers over the
corresponding cell to optimize a two-class splitting criterion. We precisely avoid sampling the
outliers by using the proportion expectation volume(tL)/volume(t).

One-Class RF algorithm. Let us summarize the algorithm in its most generic version. It has
7 parameters: max_samples, max_features_tree, max_features_node, γ, max_depth,
n_trees, sk. Each tree is classically grown on a random subset of both the input samples and
the input features (Ho, 1998; Panov & Džeroski, 2007). This random subset is a sub-sample of
size max_samples, with max_features_tree variables chosen at random without replace-
ment (replacement is only done after the tree is grown). The tree is built by minimizing a
one-class version of the Gini criterion (Gini, 1912), obtained by replacing empirical quantities
related to the (unobserved) second class by population ones. These correspond to a weighted
uniform distribution, the weight increasing when the volume of the node decreases, in order to
avoid highly unbalanced classes (volume vs. observations). Indeed when their depth increases,
the nodes tend to have smaller volumes while keeping as much (normal) observations as they
can.

New nodes are built (by minimizing this criterion) until the maximal depth max_depth is
achieved. Minimization is done as introduced in (Amit & Geman, 1997), by defining a large
number max_features_node of geometric features and searching over a random selection
of these for the best split at each node. The forest is composed of a number n_trees of
trees. The predicted score of a point x is given by sk(x), which is either the stepwise density
estimate (induced by the forest) around x, the local density of a typical cell containing x or
the averaged depth of x among the forest. Chapter 9 formally defines the one-class splitting
criteria and provides an extensive benchmark of state-of-the-art anomaly detection algorithms.
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1.6 Scikit-learn contributions

As an other contribution of this thesis, two classical anomaly detection algorithms, Isolation
Forest and Local Outlier Factor have been implemented and merged on scikit-learn. These
algorithms are presented in the Background Part, Section 4.2.

Scikit-learn, see Pedregosa et al. (2011), is an open-source library providing well-established
machine learning methods. It is a Python module, the latter language being very popular for
scientific computing, thanks to its high-level interactive nature. Scikit-learn provides a com-
position mechanism (through a Pipeline object) to combine estimators, preprocessing tools
and model selection methods in such a way the user can easily construct complex ad-hoc
algorithms. The development is done on Github1, a Git repository hosting service which facil-
itates collaboration, as coding is done in strong interaction with other developers. Because of
the large number of developers, emphasis is put on keeping the project maintainable, e.g. by
avoiding duplicating code at the price of a reasonable loss of computational performance.

This contribution was supervised by Alexandre Gramfort and was funded by the Paris Saclay
Center for Data Science. It also includes work for the scikit-learn maintenance like resolving
issues and reviewing other contributors’ pull requests.

1.7 Conclusion and Scientific Output

The contributions of this thesis can be summarized as follows.

First, an adequate performance criterion called Excess-Mass curve is proposed (Section 1.3.3),
in order to compare possible candidate scoring function and to pick one eventually. The cor-
responding publication is Goix et al. (2015c):

• On Anomaly Ranking and Excess-Mass Curves. (AISTATS 2015).
Authors: Goix, Sabourin, and Clémençon.

As a second contribution, we bring advances in multivariate EVT by providing non-asymptotic
bounds for the estimation of the STDF, a functional characterizing the extreme dependence
structure (Section 1.4.1). The corresponding publication is Goix et al. (2015b):

• Learning the dependence structure of rare events: a non-asymptotic study. (COLT 2015).
Authors: Goix, Sabourin, and Clémençon.

The third contribution is to design a statistical method that produces a (possibly sparse) rep-
resentation of the dependence structure of extremes, while deriving non-asymptotic bounds to
assess the accuracy of the estimation procedure (Section 1.4.2). This contribution also includes
a multivariate EVT-based algorithm which returns a scoring functions defined in extreme re-
gions. This directly applies to anomaly detection as an abnormality score. The corresponding
publications are Goix et al. (2016c), Goix et al. (2015a) and Goix et al. (2016b):

• Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking.
(AISTATS 2016 and NIPS 2015 Workshop on Nonparametric Methods for Large Scale
Representation Learning).
Authors: Goix, Sabourin, and Clémençon.

1https://github.com/scikit-learn
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• Sparse Representation of Multivariate Extremes with Applications to Anomaly Detec-
tion. (Under review for Journal of Multivariate Analysis).
Authors: Goix, Sabourin, and Clémençon.

As a fourth contribution, we show (empirically) that EM or MV based criteria are able to
discriminate accurately (w.r.t. ROC or PR based criteria) between scoring functions in low di-
mension. Besides, we propose a methodology based on feature sub-sampling and aggregating
to scale the use of EM or MV to higher dimensions. The corresponding publications are Goix
(2016) and Goix & Thomas (2016):

• How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? (ICML
2016, Workshop on Anomaly Detection).
Author: Goix.

• How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? (to be
submitted).
Authors: Goix and Thomas.

The fifth contribution of this thesis is to develop an efficient heuristic for building accurate
scoring functions. This is done by generalizing random forests to one-class classification. The
corresponding work (to be submitted) is Goix et al. (2016a):

• One-Class Splitting Criteria for Random Forests with Application to Anomaly Detec-
tion. (to be submitted).
Authors: Goix, Brault, Drougard and Chiapino.

As a last contribution, two classical anomaly detection algorithms have been implemented
and merged on scikit-learn. They are used in this dissertation for empirical comparison pur-
pose to attest the relevance of the forementionned approaches. The pull requests of these two
contributions are available here:

• https://github.com/scikit-learn/scikit-learn/pull/4163 (Isolation Forest)

• https://github.com/scikit-learn/scikit-learn/pull/5279 (LOF)

Context of this work. This thesis was carried out in the STA (Statistiques et Applications)
team of the Signal and Image Processing (TSI) department at Telecom ParisTech. The con-
tributions presented in this thesis were supported by Ecole Normale Supérieure de Cachan
via a ‘contrat doctoral pour normalien’ and by the industrial chair ‘Machine Learning for Big
Data’ from Telecom ParisTech. The scikit-learn contributions have been supported by the Paris
Saclay Center for Data Science regarding the collaboration with Alexandre Gramfort, and by
the forementioned machine learning chair as regards the collaboration at New York University
with Andreas Müller.

Outline of the thesis. This dissertation is organized as follows.

• Part I gathers the background work relevant to this thesis:

Chapter 2 presents general results on measure concentration inequalities;
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Chapter 3 provides a concise background on extreme value theory;

Chapter 4 reviews classical anomaly detection algorithms used in the benchmarks and
provides illustrative examples with the scikit-learn library. It also presents relating code
contributions.

• Part II deals with theoretical performance criteria for the anomaly ranking task:

Chapter 5 presents the details on anomaly ranking and excess-mass curve, as summa-
rized above Section 1.3;

• Part III focuses on EVT-based methods for anomaly detection:

Chapter 6 deals with the stable tail dependence function as summarized above in Sec-
tion 1.4.1;

Chapter 7 describes how scoring functions can be build using EVT, as previously sum-
marized in Section 1.4.2.

• Part IV gathers two efficient heuristic-based methodologies:

Chapter 8 deals with the evaluation of anomaly detection algorithms, as summarized
above Section 1.5.1;

Chapter 9 presents the details (summarized above Section 1.5.2) on one-class random
forests.
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Preliminaries
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CHAPTER 2
Concentration Inequalities from the Method of bounded

differences

Abstract This chapter presents general results on measure concentration inequalities, ob-
tained via martingale methods or with Vapnik-Chervonenkis theory. In the last section 2.4 of
this chapter, a link is also made with contributions presented in Chapter 6 which builds on
some concentration inequality stated and proved here.

Note: In addition to a review of popular results and sketches of proofs from the existing litera-
ture, the last section 2.4 of this chapter presents an original contribution; a VC-type inequality
is proved using a Bernstein-type concentration inequality. A corollary of this VC-type inequal-
ity focusing on maximal deviation on low-probability regions is needed in Chapter 6.

We recommend McDiarmid (1998) and Janson (2002) for good references on this subject, and
Massart (2007); Boucheron et al. (2013) for a extensive review on concentration inequalities.
About the impact of the concentration of measure phenomenon in EVT, see Boucheron &
Thomas (2012, 2015) and the PhD thesis Thomas (2015). References on classification and
statistical learning theory (not gathered by this background part), include Vapnik & Chervo-
nenkis (1974); Devroye et al. (1996); Bousquet et al. (2004); Boucheron et al. (2005); Bishop
(2006); Friedman et al. (2001); Vapnik (2013)

2.1 Two fundamental results

The two theorems 2.1 and 2.4 presented in this section are powerful and allow to derive many
classical concentration inequalities, like Hoeffding, Azuma, Bernstein or McDiarmid ones.
The first theorem applies to bounded r.v. while the second one only makes variance assumption.

2.1.1 Preliminary definitions

Let (Ω,F ,P) be a probability space. Let X be a random variable on this space and G a sub-σ-
algebra of F .

Notation 1. Let us assume that X is a real r.v. and that X ∈ L∞(Ω). The conditional essential
supremum sup(X|G) is the (almost surely) unique real r.v. f : Ω → R satisfying:

(i) f is G-measurable

(ii) X ≤ f a.s.

(iii) If g : Ω → R verifies (i) and (ii) then f ≤ g a.s.

23
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Note that we clearly have sup(X|G) ≥ E(X|G) and sup(X|G1) ≥ sup(X|G2) when G1 ⊂ G2.
For more properties enjoyed by conditional essential suprema, see Barron et al. (2003).

Notation 2. We still assume that X is a bounded r.v.. Let (Fk)0≤k≤n be a filtration of F
such that X is Fn-measurable. We denote X1, ..., Xn the martingale Xk = E(X|Fk) and
Yk = Xk − Xk−1 the associated martingale difference. The r.v. ran(X|G) := sup(X|G) +
sup(−X|G) is called the conditional range of X w.r.t. G. Then we denote:

⋆ rank = ran(Yk|Fk−1) = ran(Xk|Fk−1) the conditional range,

⋆ R2 =
∑n

1 ran
2
k the sum of squared conditional ranges, and r̂2 = ess sup(R2) the

maximum sum of squared conditional ranges.

Notation 3. We place ourselves in the same context as in the previous definition, but without
assuming X is bounded. The r.v. var(X|G) := E((X−E(X|G))2|G) is called the conditional
variance of X w.r.t. G. Then we denote:

• vark = var(Yk|Fk−1) = var(Xk|Fk−1) the conditional variance,

• V =
∑n

1 vark the sum of conditional variances and ν̂ = ess sup(V ) the maximum sum
of conditional variances,

∗ dev+
k
= sup(Yk|Fk−1) the conditional positive deviation,

∗ maxdev+ = ess sup( max
0≤k≤n

dev+k ) the maximum conditional positive deviation.

The r.v. V is also called the ‘predictable quadratic variation’ of the martingale (Xk) and is
such that E(V ) = var(X).

2.1.2 Inequality for Bounded Random Variables

Theorem 2.1. (McDiarmid, 1998) Let X be a bounded r.v. with E(X) = µ, and (Fk)0≤k≤n a
filtration of F such that F0 = {∅,Ω} and such that X is Fn-measurable. Then for any t ≥ 0,

P(X − µ ≥ t) ≤ e−2t
2/r̂2 ,

and more generally

∀r2 ≥ 0, P((X − µ ≥ t) ∩ (R2 ≤ r2)) ≤ e−2t
2/r2 .

To prove this result the following lemmas are needed.

Lemma 2.2. Let (Fk)0≤k≤n be a filtration of F with F0 = {∅,Ω}, and (Yk)1≤k≤n be a
martingale difference for this filtration such that each Yk is bounded. Let Z be any random
variable. Then

E(Zeh
∑

Yk) ≤ sup(Z

n∏

k=1

E(ehYk |Fk−1)).
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Proof. This result can be easily proved by induction.

E
[
Zeh

∑
Yk

]
= E

[
ehY1E

[
Zeh

∑n
2 Yk | F1

]]

= E
[
ehY1E

[
ehY2 ... E

[
E [Z | Fn] e

hYn | Fn−1
]
... | F1

]]

≤ E
[
ehY1E

[
ehY2 ... E

[
sup [Z | Fn] e

hYn | Fn−1
]
... | F1

]]

= E
[
ehY1E

[
ehY2 ... sup

[
ZE

[
ehYn | Fn−1

]
| Fn

]
... | F1

]]

= sup

[
Z
∏

k

E(ehYk |Fk−1) | Fn

]

≤ sup

[
Z
∏

k

E(ehYk |Fk−1)

]
(since F0 ⊂ Fn)

This lemma allows to decompose the expectation of a product into (the supremum of) a product
of expectations, although

∑
Yk is not a sum of independent variables.

Lemma 2.3. Let X be a random variable such that E(X) = 0 and a ≤ X ≤ b, then for any

h > 0, we have E(ehX) ≤ e
1
8
h2(b−a)2 . This result remains true with conditional expectation.

Proof. The proof of this result does not present any difficulty but is quite technical. It is based
on the convexity of the function x 7→ ehx (see McDiarmid (1998) for details).

Proof of Theorem 2.1. This proof follows a traditional scheme, based on four steps: Chernoff
method (exponential Markov inequality introducing a parameter h); decomposition of the ex-
ponential term using independence (or in the present case using Lemma 2.2 which plays the
same role); upper bound on each term with Lemma 2.3; and finally optimization in parameter
h.

Let Xk = E(X|Fk−1) and Yk = Xk −Xk−1 the associated martingale difference. Define the
r.v. Z as Z = 1R2≤r2 . Exponential Markov inequality yields, for any h > 0,

P((X − µ ≥ t) ∩ (R2 ≤ r2)) = P(Zeh(X−µ) ≥ eht)

≤ e−htE(Zeh(X−µ))

≤ e−htE(Zeh(
∑

Yk))

From Lemma 2.3, E(ehYk |Fk−1) ≤ e
1
8
h2r2k so that using Lemma 2.2,

E(Zeh
∑

Yk) ≤ sup(Z
∏

E(ehYk |Fk−1)),

≤ sup(Z
∏

e
1
8
h2r2k),

= sup(Ze
1
8
h2R2

),

≤ e
1
8
sup(ZR2),

≤ e
1
8
h2r2
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By setting h = 4t
r2

, we finally obtain

P((X − µ ≥ t) ∩ (R2 ≤ r2)) ≤ e−ht+
1
8
h2r2 ≤ e−2t

2/r2 .

2.1.3 Bernstein-type Inequality (with variance term)

Theorem 2.4. (McDiarmid, 1998) Let X be a r.v. with E(X) = µ and (Fk)0≤k≤n a filtration
of F such that F0 = {∅,Ω} and such that X is Fn-measurable. Let b = maxdev+ the
maximum conditional deviation assumed to be finite, and ν̂ = ess supV the maximum sum of
conditional variances also assumed to be finite. Then, for any t ≥ 0,

P(X − µ ≥ t) ≤ e
− t2

2(ν̂+bt/3) ,

and more generally, for any v ≥ 0,

P((X − µ ≥ t) ∩ (V ≤ v)) ≤ e
− t2

2(v+bt/3) .

Unlike Theorem 2.1, this result also applies in the case of unbounded r.v. X . Note that even
in the case X is bounded, Theorem 2.4 may give better bounds if the variance term ν̂ is small
enough.

To prove this result, two lemmas are needed: Lemma 2.2 previously stated, exploiting the
decomposition into martingale differences and thus playing the same role as independence;
and the following lemma replacing Lemma 2.3 in the case of non-necessarily bounded r.v., but
with bounded variance.

Lemma 2.5. Let g be the non-increasing functional defined for x 6= 0 by g(x) = ex−1−x
x2 ,

and X a r.v. satisfying E(X) = 0 and X ≤ b. Then E(eX) ≤ eg(b)var(X), and this result still
holds with conditional expectation and variance, and replacing b by the associated conditional
supremum.

Proof. Noting that ex ≤ 1 + x + x2g(b) for x ≤ b, we have E(eX) ≤ 1 + g(b)var(X) ≤
eg(b)var(X).

Proof of Theorem 2.4. The proof follows the same classical lines as the one of Theorem 2.1.
Let Y1, ..., Yn be the martingale differences associated to X and (Fk), and Z = 1V≤v. Expo-
nential Markov inequality yields, for every h > 0,

P((X − µ ≥ t) ∩ (V ≤ v)) = P(Zeh(X−µ) ≥ eht)

≤ e−htE(Zeh(X−µ))

≤ e−htE(Zeh(
∑

Yk))
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From Lemma 2.5, E(ehYk |Fk−1) ≤ eh
2g(hdev+k )vark ≤ eh

2g(hb)vark so that from Lemma 2.2
we obtain,

E(Zeh
∑

Yk) ≤ sup(Z
∏

E(ehYk |Fk−1))

≤ sup(Z
∏

eh
2g(hb)vark)

= sup(Zeh
2g(hb)V )

≤ eh
2g(hb) sup(ZV )

≤ eh
2g(hb)v.

By setting h = 1
b ln(1+

bt
v ) and using the fact that for every positive x, we have (1+x) ln(1+

x)− x ≥ 3x2/(6 + 2x), we finally get

P((X − µ ≥ t) ∩ (R2 ≤ r2)) ≤ e−ht+h2g(hb)v

≤ e
− t2

2(v+bt/3) .

2.2 Popular Inequalities

In this section, we illustrate the strength of Theorem 2.1 and Theorem 2.4 by deriving as
corollaries classical concentration inequalities. The first three propositions hold for bounded
random variables and derive from Theorem 2.1. The last one (Bernstein) holds under variance
assumption and derives from Theorem 2.4.

Proposition 2.6. (AZUMA-HOEFFDING INEQUALITY) Let (Fk)0≤k≤n be a filtration of F
such that F0 = {∅,Ω}, Z a martingale and Y the associated martingale difference. If for
every k, |Yk| ≤ ck, then we have

P(
n∑

k=1

Yk ≥ t) ≤ e
− t2

2
∑n

k=1
c2
k .

Moreover, the same inequality holds when replacing
∑n

k=1 Yk by −∑n
k=1 Yk.

Proof. Apply Theorem 2.1 with X =
∑n

1 Yk, Fk = σ(Y1, ..., Yk) and Xk = E(X|Fk).
Thus, µ = 0, Xk =

∑k
1 Yi because Z is a martingale, and Yi = Xi − Xi−1. Therefore,

rank = ran(Yk|Fk) ≤ 2ck, hence R2 ≤ 4
∑

c2k and r̂2 ≤ 4
∑

c2k. By Theorem 2.1, P(X ≥

t) ≤ e
−2t2

r̂2 ≤ e
− t2

2
∑

c2
k . Applying this inequality to −X , we obtain the desired result.

Proposition 2.7. (MCDIARMID INEQUALITY, OR ‘INDEPENDENT BOUNDED DIFFERENCES

INEQUALITY’) Let X = (X1, ..., Xn) where the Xi’s are independent r.v. with respected
values in Ai. Let f :

∏
Ak → R verifying the following Lipschitz condition.

For any x, x′ ∈
n∏

1

Ak, |f(x)− f(x′)| ≤ ck if xj = x′j , for j 6= k, 1 ≤ j ≤ n. (2.1)
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Let us denote µ = E [f(X)]. Then, for any t ≥ 0,

P [f(X)− µ ≥ t] ≤ e−2t
2/

∑
c2k .

Moreover, the same inequality holds when replacing f(X)− µ by µ− f(X).

Proof. Lipschitz condition (2.1) implies that f is bounded, thus from Theorem 2.1 we have

P [f(X)− µ ≥ t] ≤ e−2t
2/r̂2 ,

where r̂2 is defined by setting Fk = σ(X1, ..., Xk) and X = f(X1, ..., Xn). Note that this
inequality holds true only under the assumption that f is bounded, without independence
assumption or Lipschitz condition. The latter two allow to derive an upper bound on r̂2:
rank = ran( E(f(X)|Fk)− E [f(X)|Fk−1] |Fk−1) ≤ ck.

Proposition 2.8. (HOEFFDING INEQUALITY) Let X1, ..., Xn be n independent random vari-
ables such that ai ≤ Xi ≤ bi, 1 ≤ i ≤ n. Define Sn =

∑
Xk and µ = E(Sn). Then,

P(Sn − µ ≥ t) ≤ e−2t
2/

∑
(bk−ak)2 .

Moreover, the same inequality holds when replacing Sn − µ by µ− Sn.

Proof. This is a immediate consequence of previous McDiarmid inequality (Proposition 2.7)
with Ak = [ak, bk], f(x) =

∑
xk and ck = bk − ak. Within this setting, r̂2 ≤ bk − ak.

Remark 2.9. This result can be directly proved with the classical lines as in Theorem 2.1:
Exponential Markov inequality, sum of independent variables assumption (or of martingale
differences), and use of Lemma 2.3 before optimization in h:

P(Sn − µ ≥ t) ≤ E(eh(Sn−µ))e−ht

E(
∏

eh(Xk−EXk)) =
∏

E(eh(Xk−EXk)) (from independence)

≤ e
1
8
h2

∑
(bk−ak)2 (from Lemma 2.3),

then setting h = 4t∑
(bk−ak)2 .

Remark 2.10. Comparing the two previous McDiarmid and Hoeffding inequalities with The-
orem 2.1, we can appreciate that martingale differences decomposition allows to generalize
the case of a sum of independent r.v. . Subject to introducing more precise control tools like
r̂2, independence or Lipschitz condition are not needed anymore. The two latter additional
assumptions simply allow to bound r̂2.

The three previous propositions ignore information about the variance of the underlying pro-
cess. The following inequality deriving from Theorem 2.4 provides an improvement in this
respect.

Proposition 2.11. (BERNSTEIN INEQUALITY) Let X1, ..., Xn be n independent random vari-
ables with Xk − E(Xk) ≤ b. We consider their sum Sn =

∑
Xk, the sum variance

V = var(Sn) as well as the sum expectation E(Sn) = µ. Then, for any t ≥ 0,

P(Sn − µ ≥ t) ≤ e
− t2

2(V +bt/3) ,
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and more generally,

P((Sn − µ ≥ t) ∩ (V ≤ v)) ≤ e
− t2

2(v+bt/3) .

Remark 2.12. (GAIN WITH RESPECT TO INEQUALITIES WITHOUT VARIANCE TERM) As-
sume that 0 ≤ Xi ≤ 1 and consider renormalized quantities, namely S̃n := Sn/n, µ̃ := µ/n,
Ṽ = V/n2. Then,

P(S̃n − µ̃ ≥ t) ≤ e−2nt
2

(Hoeffding)

and P(S̃n − µ̃ ≥ t) ≤ e
− nt2

2(Ṽ +t/3) (Bernstein),

with t typically of order between 1/n and 1/
√
n. Thus, if the variance Ṽ is small enough,

Bernstein inequality ‘almost’ allows to have rates in e−nt instead of e−nt
2
. In other words,

Bernstein-type inequality may give high probability bounds in 1
n log 1

δ instead of
√

1
n log 1

δ .
This fact will be used for deriving concentration bounds on low probability regions.

Proof. Let Fk = σ(X1, ..., Xn) , X =
∑

(Xk − EXk) = Sn − µ , X̃k = E(X|Fk) =∑k
1(Xi−EXi) and Yk = X̃k−X̃k−1. Then Yk = Xk−EXk, hence dev+k ≤ b, maxdev+ ≤ b

and vark = var(Yk|Fk−1) = E((Yk − E(Yk|Fk−1))2|Fk−1) = E((Yk − EYk)
2) = var(Yk).

Therefore ν̂ = ess sup(
∑

vark) = ess sup(V ) = V . Theorem 2.4 applies and yields,

P(Sn − µ ≥ t) ≤ e
− t2

2(V +bt/3) ,

P((Sn − µ ≥ t) ∩ (V ≤ v)) ≤ e
− t2

2(v+bt/3) .

2.3 Connections with Statistical Learning and VC theory

In statistical learning theory, we are often interested in deriving concentration inequalities for
the random variable

f(X1, . . . ,Xn) = sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ , (2.2)

where X1, ...,Xn are i .i .d . realizations of a r.v. X with values in Rd and A a class of subsets
of Rd. The class A should be complex enough to provide small bias in the estimation process,
while simple enough to provide small variance (avoiding over-fitting). Typically, A will be a
so-called VC-class, meaning that the following VC-shatter coefficient,

SA(n) = max
x1,...,xd∈Rd

|{{x1, . . . , xn} ∩A, A ∈ A}| , (2.3)

can be bounded in that way,

SA(n) ≤ (n+ 1)VA , (2.4)
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where VA is the VC-dimension of A. SA(n) is the maximal number of different subsets of
a set of n points which can be obtained by intersecting it with elements of A. Note that for
any n, SA(n) ≤ 2n. For a very large class A (those of infinite VC-dimension), we have
SA(n) = 2n for all n. The VC-dimension of a class A is precisely the larger number N such
that SA(N) = 2N . In that case, for n ≤ N , SA(n) = 2n.

As the variance of the r.v. f(X1, . . . ,Xn) seems inaccessible, it is natural to apply a concen-
tration inequality without variance term. It is easy to check that the function f verifies the
Lipschitz condition 2.1 in McDiarmid inequality (Proposition 2.7), with ck = 1/n. Thus,
Proposition 2.7 yields

P [f(X1, . . . ,Xn)− Ef(X1, . . . ,Xn) ≥ t] ≤ e−2nt
2
,

or equivalently

f(X1, . . . ,Xn) ≤ Ef(X1, . . . ,Xn) +

√
1

2n
log

1

δ
(2.5)

with probability at least 1 − δ. The complexity of class A comes into play for bounding the
expectation of f(X1, . . . ,Xn). Consider the Rademacher average

Rn = E sup
A∈A

1

n

∣∣∣∣∣
n∑

i=1

σi1Xi∈A

∣∣∣∣∣

where (σi)i≥1 is a Rademacher chaos independent of the Xi’s, namely the σi’s are i .i .d . with
P(σi = 1) = P(σi = 0) = 1/2. Then, the following result holds true.

Lemma 2.13. Let X1, ...,Xn i .i .d . random variables, and a VC-class A with VC-dimension
VA. The following inequalities hold true:

(i) Ef(X1, . . . ,Xn) ≤ 2Rn

(ii) Rn ≤ C

√
VA
n

Remark 2.14. Note that bound (ii) holds even for the conditional Rademacher average

E

[
sup
A∈A

1

n

∣∣∣∣∣
n∑

i=1

σi1Xi∈A

∣∣∣∣∣
∣∣∣X1, . . .Xn

]
.

Proof. The second inequality is quite difficult to obtain and will not be detailed here. The
proof of the second point is classical and relies on a symmetrization step with a ghost sample
X′i and a randomization step with a Rademacher chaos: Let (X

′
i)1≤i≤n a ghost sample, namely
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i .i .d . independent copy of the Xi’s, we may write:

Ef(X1, . . . ,Xn)

= E sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣

= E sup
A∈A

∣∣∣∣∣E
[
1

n

n∑

i=1

1
X

′
i∈A

]
− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣

= E sup
A∈A

∣∣∣∣∣E
[
1

n

n∑

i=1

1
X

′
i∈A

− 1

n

n∑

i=1

1Xi∈A
∣∣∣ X1, . . . ,Xn

]∣∣∣∣∣

≤ E sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

1
X

′
i∈A

− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ (since E sup(.) ≥ supE(.))

= E sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

σi

(
1
X

′
i∈A

− 1Xi∈A
)∣∣∣∣∣ (since 1

X
′
i∈A

− 1Xi∈A
L
= σi(1X

′
i∈A

− 1Xi∈A))

≤ E sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

σi1X
′
i∈A

∣∣∣∣∣ + sup
A∈A

∣∣∣∣∣
1

n

n∑

i=1

−σi1Xi∈A

∣∣∣∣∣
= 2Rn

Thus, combining Lemma 2.13 with (2.5) we obtain the following version of the popular
Vapnik-Chervonenkis inequality.

Theorem 2.15. (VAPNIK-CHERVONENKIS) Let X1, ...,Xn i .i .d . random variables, and
a VC-class A with VC-dimension VA. Recall that f(X1, . . . ,Xn) – see (2.2) – refers to
the maximal deviation supA∈A

∣∣P(X ∈ A)− 1
n

∑n
i=1 1Xi∈A

∣∣ . For δ > 0, with probability
higher than 1− δ:

f(X1, . . . ,Xn) ≤ C

√
VA + log 1

δ

n

In the literature, one often find a version of Vapnik-Chervonenkis inequality with an additional
log n factor,

f(X1, . . . ,Xn) ≤ C

√
VA log(n) + log 1

δ

n
.

The latter comes from the sub-optimal inequality Rn ≤ C

√
VA log(n)

n .

2.4 Sharper VC-bounds through a Bernstein-type inequality

In this section, we prove a refinement of Theorem 2.15 above, stated in Proposition 2.18. This
result is useful for the study of maximal deviations on low-probability regions, see Chapter 6.

Contributions presented in Chapter 6 include some VC-type inequality obtained by using a
Bernstein-type inequality instead of the McDiarmid one used in (2.5). As mentioned above,
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the variance of f(X1, . . . ,Xn) seems inaccessible. For this reason, we have to consider more
complex control tools like the maximum sum of conditional variances and apply the strong
fundamental Theorem 2.4. The following lemma guarantees that the latter applies.

Lemma 2.16. Consider the r.v. f(X1, . . . ,Xn) defined above, and maxdev+ and v̂ respec-
tively its associated maximum conditional deviation and associated maximum sum of condi-
tional variances, both of which we assume to be finite. In this context,

maxdev+ ≤ 1

n
and v̂ ≤ q

n

where

q = E

(
sup
A∈A

∣∣∣1X′
1∈A − 1X1∈A

∣∣∣
)

≤ 2E

(
sup
A∈A

∣∣∣1X′
1∈A1X1 /∈A

∣∣∣
)

with X′1 an independent copy of X1.

Proof. Introduce the functional

h(x1, . . . ,xk) = E [f(X1, . . . ,Xn)|X1 = x1, . . . ,Xk = xk]

− E [f(X1, . . . ,Xn)|X1 = x1, . . . ,Xk−1 = xk−1]

The positive deviation of h(x1, . . . ,xk−1,Xk) is defined by

dev+(x1, . . . ,xk−1) = sup
x∈Rd

{h(x1, . . . ,xk−1,x)} ,

and maxdev+, the maximum of all positive deviations, by

maxdev+ = sup
x1,...,xk−1

max
k

dev+(x1, . . . ,xk−1) .

Finally, v̂, the maximum sum of variances, is defined by

v̂ = sup
x1,...,xn

n∑

k=1

Var h(x1, . . . ,xk−1,Xk) .

Considering the definition of f , we have:

h(x1, . . . ,xk−1,xk) = E sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

k∑

i=1

1xi∈A − 1

n

n∑

i=k+1

1Xi∈A

∣∣∣∣∣

− E sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

k−1∑

i=1

1xi∈A − 1

n

n∑

i=k

1Xi∈A

∣∣∣∣∣ .

Using the fact that
∣∣ supA∈A |F (A)| − supA∈A |G(A)|

∣∣ ≤ supA∈A |F (A) −G(A)| for every
function F and G of A, we obtain:

∣∣h(x1, . . . ,xk−1,xk)
∣∣ ≤ E sup

A∈A

1

n
|1xk∈A − 1Xk∈A| . (2.6)
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The term on the right hand side of (2.6) is less than 1
n so that maxdev+ ≤ 1

n . Moreover, if X′

is an independent copy of X, (2.6) yields

∣∣h(x1, . . . ,xk−1,X
′)
∣∣ ≤ E

[
sup
A∈A

1

n
|1X′∈A − 1X∈A|

∣∣∣X′
]
,

so that

E
[
h(x1, . . . ,xk−1,X

′)2
]
≤ E E

[
sup
A∈A

1

n
|1X′∈A − 1X∈A|

∣∣∣X′
]2

≤ E

[
sup
A∈A

1

n2
|1X′∈A − 1X∈A|2

]

≤ 1

n2
E

[
sup
A∈A

|1X′∈A − 1X∈A|
]

Thus Var(h(x1, . . . ,xk−1,Xk)) ≤ E[h(x1, . . . ,xk−1,Xk)
2] ≤ q

n2 . Finally v̂ ≤ q
n as re-

quired.

Remark 2.17. (ON PARAMETER q) The quantity q = E (supA∈A |1X′∈A − 1X∈A|) mea-
sures the complexity of class A with respect to the distribution of X (X′ being an inde-
pendent copy of X). It resembles to the Rademacher complexity Rn. However, note that
the latter is bounded independently of the distribution of X in Lemma 2.13, as bound (ii)
holds for the conditional Rademacher average, namely for any distribution. Also note that
q ≤ supA∈A P(X ∈ A) ≤ P(X ∈ ∪A∈AA := p), the probability of hitting the class A at all.

Thanks to Lemma 2.16, Theorem 2.4 applies and the following inequality holds true instead
of (2.5).

Proposition 2.18. Let X1, ...,Xn i .i .d . random variables, and a VC-class A with VC-
dimension VA. Recall that f(X1, . . . ,Xn) = supA∈A

∣∣P(X ∈ A)− 1
n

∑n
i=1 1Xi∈A

∣∣, see
(2.2). Then, for δ > 0, with probability higher than 1− δ:

f(X1, . . . ,Xn) ≤ Ef(X1, . . . ,Xn) +
2

3n
log

1

δ
+ 2

√
q

2n
log

1

δ
(2.7)

Proof. From Lemma 2.16 and Theorem 2.4, we have

P [f(X1, . . . ,Xn)− Ef(X1, . . . ,Xn) ≥ t] ≤ e
− nt2

2q+2t
3 ,

or equivalently

P

[
1

q
(f(X1, . . . ,Xn)− Ef(X1, . . . ,Xn)) ≥ t

]
≤ e

− nqt2

2+2t
3 .

Solving exp
[
− nqt2

4+ 2
3
t

]
= δ with t > 0 leads to

t =
1

3nq
log

1

δ
+

√(
1

3nq
log

1

δ

)2

+
4

nq
log

1

δ
:= h(δ)
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so that

P

[
1

q
(f(X1, . . . ,Xn)− Ef(X1, . . . ,Xn)) > h(δ)

]
≤ δ

Using
√
a+ b ≤ √

a+
√
b if a, b ≥ 0, we have h(δ) < 2

3nq log
1
δ +2

√
1
nq log

1
δ in such a way

that, with probability at least 1− δ

f(X1, . . . ,Xn) ≤ Ef(X1, . . . ,Xn) +
2

3n
log

1

δ
+ 2

√
q

2n
log

1

δ
.

Remark 2.19. (EXPECTATION BOUND) By classical arguments (see the proof of Lemma 2.13

above), Ef(X1, . . . ,Xn) ≤ qn := E supA∈A
∣∣∣ 1n
∑n

i=1 σi

(
1
X

′
i∈A

− 1Xi∈A
)∣∣∣. Using Mas-

sart’s finite class Lemma, see Massart (2000), to show that qn ≤ √
q

√
2VA log(en/VA)

n yields

f(X1, . . . ,Xn) ≤ √
q

√
12 log 1

δ + 4VA log( en
VA

)

n
+

2

3n
log

1

δ

with probability at least 1− δ.

Contributions detailed in Chapter 6 use the following corollary of Proposition 2.18, see Theo-
rem 6.1.

Corollary 2.20. Let X1, . . . ,Xn i .i .d . realizations of a r.v. X and a VC-class A with VC
dimension VA.Consider the class union A = ∪A∈AA, and let p = P(X ∈ A). Then there is
an absolute constant C such that for all 0 < δ < 1, with probability at least 1− δ,

sup
A∈A

∣∣∣∣∣P
[
X ∈ A

]
− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ C

[√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

]
.

Proof. The inequality follows from Proposition 2.18 combined with the following Lemma
which slightly improves Lemma 2.13.

Lemma 2.21. Let X1, ...,Xn i .i .d . random variables with values in Rd as above, and a
VC-class A with VC-dimension VA. Recall that p is the probability of hitting the class at all
p = P(X ∈ ∪A∈AA). The following inequality holds true:

(i) Ef(X1, . . . ,Xn) ≤ 2Rn

(ii′) Rn ≤ C

√
pVA
n

Proof of Lemma 2.21. Denote by Rn,p the associated relative Rademacher average defined by

Rn,p = E sup
A∈A

1

np

∣∣∣∣∣
n∑

i=1

σi1Xi∈A

∣∣∣∣∣ .
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Let us define i .i .d . r.v. Yi independent from Xi whose law is the law of X conditioned on the

event X ∈ A. It is easy to show that
∑n

i=1 σi1Xi∈A
d
=
∑κ

i=1 σi1Yi∈A, where κ ∼ Bin(n, p)
independent of the Yi’s. Thus,

Rn,p = E sup
A∈A

1

np

∣∣∣∣∣
n∑

i=1

σi1Xi∈A

∣∣∣∣∣ = E sup
A∈A

1

np

∣∣∣∣∣
κ∑

i=1

σi1Yi∈A

∣∣∣∣∣

= E

[
E

[
sup
A∈A

1

np

∣∣∣∣∣
κ∑

i=1

σi1Yi∈A

∣∣∣∣∣ | κ
]]

= E [Φ(κ)]

where

φ(K) = E

[
sup
A∈A

1

np

∣∣∣∣∣
K∑

i=1

σi1Yi∈A

∣∣∣∣∣

]
=

K

np
RK ≤ K

np

C
√
VA√
K

.

Thus,

Rn,p ≤ E

[√
κ

np
C
√

VA

]
≤
√

E[κ]

np
C
√

VA ≤ C
√
VA√
np

.

Finally, Rn = pRn,p ≤ C
√

pVA
n as required.





CHAPTER 3
Extreme Value Theory

Abstract In this chapter, we provide a concise background on Extreme Value Theory (EVT).
The tools needed to approach chapters 6 and 7 are introduced.

There are many books introducing extreme value theory, like Leadbetter et al. (1983), Resnick
(1987), Coles et al. (2001), Beirlant et al. (2006), De Haan & Ferreira (2007), and Resnick
(2007). Our favorites are Resnick (2007) for its comprehensiveness while remaining acces-
sible, and Coles et al. (2001) for the emphasis it puts on intuition. For a focus on Multi-
variate Extremes, we recommend Chap.6 of Resnick (2007) (and in particular, comprehensive
Thm.6.1, 6.2 and 6.3) completed with Chap.8 of Coles et al. (2001) for additional intuition. For
the hurried reader, the combination of Segers (2012b), the two introductory parts of Einmahl
et al. (2012) and the first four pages of Coles & Tawn (1991) provides a quick but in-depth
introduction to multivariate extreme value theory, and have been of precious help to the author.

Extreme Value Theory (EVT) develops models for learning the unusual rather than the usual,
in order to provide a reasonable assessment of the probability of occurrence of rare events.
Such models are widely used in fields involving risk management such as Finance, Insurance,
Operation Research, Telecommunication or Environmental Sciences for instance. For clarity,
we start off with recalling some key notions pertaining to (multivariate) EVT, that shall be
involved in the formulation of the problem next stated and in its subsequent analysis.

Notation reminder Throughout this chapter and all along this thesis, bold symbols refer to
multivariate quantities, and for m ∈ R ∪ {∞}, m denotes the vector (m, . . . ,m). Also, com-
parison operators between two vectors (or between a vector and a real number) are understood
component-wise, i.e. ‘x ≤ z’ means ‘xj ≤ zj for all 1 ≤ j ≤ d’ and for any real number
T , ‘x ≤ T ’ means ‘xj ≤ T for all 1 ≤ j ≤ d’. We denote by ⌊u⌋ the integer part of any
real number u, by u+ = max(0, u) its positive part and by δa the Dirac mass at any point
a ∈ Rd. For uni-dimensional random variables Y1, . . . , Yn, Y(1) ≤ . . . ≤ Y(n) denote their
order statistics.

3.1 Univariate Extreme Value Theory

In the univariate case, EVT essentially consists in modeling the distribution of the maxima
(resp. the upper tail of the r.v. under study) as a generalized extreme value distribution, namely
an element of the Gumbel, Fréchet or Weibull parametric families (resp. by a generalized
Pareto distribution).

37
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A useful setting to understand the use of EVT is that of risk monitoring. A typical quantity
of interest in the univariate case is the (1 − p)th quantile of the distribution F of a r.v. X , for
a given exceedance probability p, that is xp = inf{x ∈ R, P(X > x) ≤ p}. For moderate
values of p, a natural empirical estimate is

xp,n = inf{x ∈ R, 1/n

n∑

i=1

1{Xi>x} ≤ p}.

However, if p is very small, the finite sample X1, . . . , Xn carries insufficient information
and the empirical quantile xp,n becomes unreliable. That is where EVT comes into play by
providing parametric estimates of large quantiles: whereas statistical inference often involves
sample means and the Central Limit Theorem, EVT handles phenomena whose behavior is
not ruled by an ‘averaging effect’. The focus is on the sample maximum

Mn = max{X1, . . . , Xn}

rather than the mean. A first natural approach is to estimate F from observed data to deduce
an estimate of Fn, given that the distribution of Mn is

P(Mn ≤ x) = P(X1 ≤ x) . . .P(Xn ≤ x) = F (x)n.

Unfortunately, the exponent in the number of data induces huge discrepancies for such plug-in
techniques. The next natural approach is to look directly for appropriate families of models for
Fn. A first difficulty is that any point less than the upper point of F is finally exceeded by the
maximum of a sufficiently large number of data: Fn(x) → 0 for any x such that F (x) < 1. In
other words, the distribution of Mn converge to a dirac mass on inf{x, F (x) = 1}. Therefore,
we have to consider a renormalized version of Mn,

Mn − bn
an

with an > 0. Then, the cornerstone result of univariate EVT is the following.

Theorem 3.1. Assume that there exist sequences {an, n ≥ 1} and {bn, n ≥ 1}, the an’s being
positive, such that Mn−bn

an
converges in distribution to a non-degenerate distribution, namely

P

[
Mn − bn

an
≤ x

]
= Fn(anx+ bn) → G(x) (3.1)

for all continuity point of G, where G is a non-degenerate distribution function (i.e. without
dirac mass). Then G belongs to one of the three following extreme value distributions (up to a
re-scaling x′ = x−b

a which can be removed by changing an and bn):

Gumbel: G(x) = exp
(
−e−x

)
for x ∈ (−∞,+∞),

Fréchet: G(x) = exp
(
−x−α

)
if x > 0 and G(x) = 0 otherwise,

Weibull: G(x) = exp (−(−x)α) if x < 0 and G(x) = 1 otherwise,

with α > 0.

These extreme value distributions plotted in Figure 3.1 can be summarized into the so-called
Generalized Extreme Value (GEV) Distribution,

G(x) = exp
(
− [1 + γx]−1/γ

)
(3.2)
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FIGURE 3.1: Extreme Value Distribution with α = 2

for 1 + γx > 0, γ ∈ R, setting by convention (1 + γx)−1/γ = e−x for γ = 0 (continuous
extension). The sign of γ controls the shape of the tail of F . In the case γ > 0 (as for the
Cauchy distribution), G is referred to as a Fréchet distribution and F has a heavy tail. If
γ = 0 (as for normal distributions), G is a Gumbel distribution and F has a light tail. If
γ < 0 (as for uniform distributions), G is called a Weibull distribution and F has a finite
endpoint. Estimates of univariate extreme quantiles then rely on estimates of the parameters
an, bn, and γ, see Dekkers et al. (1989), Einmahl et al. (2009). The Hill estimator or one
of its generalizations, see Hill (1975); Smith (1987); Beirlant et al. (1996); Girard (2004);
Boucheron & Thomas (2015), provides an estimate of the tail parameter γ. A special case of
extreme quantile estimation is when some covariate information is recorded simultaneously
with the quantity of interest. The extreme quantile thus depends on the covariate and is called
conditional extreme quantile (Beirlant & Goegebeur, 2004; Chernozhukov, 2005; Gardes &
Girard, 2008; Gardes et al., 2010; Girard & Jacob, 2008; Daouia et al., 2011, 2013).

Example 3.1. • Assume the Xi’s to be standard exponential variables (their cdf is
F (x) = 1 − e−x). In that case, letting an = 1 and bn = log(n), we have
P[(Mn − bn)/an ≤ z] = P[X1 ≤ z + log n]n = [1 − e−z/n]n → exp(−e−z), for
z ∈ R. The limit distribution is of Gumbel type (γ = 0).

• If the Xi’s are standard Fréchet (F (x) = exp (−1/z)), letting an = n and bn = 0, one
has immediately P[(Mn − bn)/an ≤ z] = Fn(nz) = exp(−1/z), for z > 0. The limit
distribution remains the Fréchet one (γ = 1).

• If the Xi’s are uniform on [0, 1], letting an = 1/n and bn = 1, one has P[(Mn −
bn)/an ≤ z] = Fn(n−1z + 1) → exp(z), for z < 0. The limit distribution is the
Weibull one (γ = −1).
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One can establish an equivalent formulation of Assumption (3.1) which does not rely anymore
on the maximum Mn:

lim
n→∞

n P

(
X − bn

an
≥ x

)
= − logG(x) (3.3)

for all continuity points x ∈ R of G. The intuition behind this equivalence is that

− log(Fn(anx+ bn)) ∼ n(1− F (anx+ bn)) = n P

(
X − bn

an
≥ x

)

when n → ∞ as F (anx+ bn) ∼ 1. The tail behavior of F is then essentially characterized by
G, which is proved to be – up to re-scaling – of the type (3.2). Note that Assumption (3.1) (or

(3.3)) is fulfilled for most textbook distributions. In that case F is said to lie in the domain of
attraction of G, written F ∈ DA(G).

3.2 Extension to the Multivariate framework

Extensions to the multivariate setting are well understood from a probabilistic point of view,
but far from obvious from a statistical perspective. Indeed, the tail dependence structure,
ruling the possible simultaneous occurrence of large observations in several directions, has no
finite-dimensional parametrization.

The analogue of Assumption (3.3) for a d-dimensional r.v. X = (X1, . . . , Xd) with distribu-
tion F(x) := P(X1 ≤ x1, . . . , Xd ≤ xd), written F ∈ DA(G) stipulates the existence of two
sequences {an, n ≥ 1} and {bn, n ≥ 1} in Rd, the an’s being positive, and a non-degenerate
distribution function G such that

lim
n→∞

n P

(
X1 − b1n

a1n
≥ x1 or . . . or

Xd − bdn
adn

≥ xd

)
= − logG(x) (3.4)

for all continuity points x ∈ Rd of G. This clearly implies that the margins
G1(x1), . . . , Gd(xd) are univariate extreme value distributions, namely of the type Gj(x) =
exp(−(1 + γjx)

−1/γj ). Also, denoting by F1, . . . , Fd the marginal distributions of F, As-
sumption (3.4) implies marginal convergence: Fi ∈ DA(Gi) for i = 1, . . . , n. To understand
the structure of the limit G and dispose of the unknown sequences (an,bn) (which are entirely
determined by the marginal distributions Fj’s), it is convenient to work with marginally stan-
dardized variables, that is, to separate the margins from the dependence structure in the descrip-
tion of the joint distribution of X. Consider the standardized variables V j = 1/(1− Fj(X

j))
and V = (V 1, . . . , V d). In fact (see Proposition 5.10 in Resnick (1987)), Assumption (3.4)
is equivalent to:

• marginal convergences Fj ∈ DA(Gj) as in (3.3), together with

• standard multivariate regular variation of V’s distribution, which means existence of a
limit measure µ on [0,∞]d \ {0} such that

n P

(
V 1

n
≥ v1 or · · · or

V d

n
≥ vd

)
−−−→
n→∞

µ ([0,v]c) , (3.5)

where [0,v] := [0, v1]× · · · × [0, vd].
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Thus the variable V satisfies (3.4) with an = n = (n, . . . , n), bn = 0 = (0, . . . , 0).

Remark 3.2. The standardization in V allows to study the same extreme value distribution
for each marginal, and with the same re-scaling sequences an and bn for each marginal. In
the case of Pareto standardization like here, the underlying extreme value distribution is the
Fréchet one.

The dependence structure of the limit G in (3.4) can be expressed by means of the so-termed
exponent measure µ:

− logG(x) = µ

([
0,

( −1

logG1(x1)
, . . . ,

−1

logGd(xd)

)]c)
.

The latter is finite on sets bounded away from 0 and has the homogeneity property : µ(t · ) =
t−1µ( · ). Observe in addition that, due to the standardization chosen (with ‘nearly’ Pareto
margins), the support of µ is included in [0, 1]c. To wit, the measure µ should be viewed,
up to a a normalizing factor, as the asymptotic distribution of V in extreme regions. For any
borelian subset A bounded away from 0 on which µ is continuous, we have

t P (V ∈ tA) −−−→
t→∞

µ(A). (3.6)

Using the homogeneity property µ(t · ) = t−1µ( · ), one may show that µ can be decomposed
into a radial component and an angular component Φ, which are independent from each other
(see e.g. de Haan & Resnick (1977)). Indeed, for all v = (v1, ..., vd) ∈ Rd, set





R(v) := ‖v‖∞ =
d

max
i=1

vi,

Θ(v) :=

(
v1

R(v)
, ...,

vd
R(v)

)
∈ Sd−1

∞ ,
(3.7)

where Sd−1
∞ is the positive orthant of the unit sphere in Rd for the infinity norm. Define the

spectral measure (also called angular measure) by Φ(B) = µ({v : R(v) > 1,Θ(v) ∈ B}).
Then, for every B ⊂ Sd−1

∞ ,

µ{v : R(v) > z,Θ(v) ∈ B} = z−1Φ(B) . (3.8)

In a nutshell, there is a one-to-one correspondence between the exponent measure µ and the
angular measure Φ, both of them can be used to characterize the asymptotic tail dependence
of the distribution F (as soon as the margins Fj are known), since

µ
(
[0,x−1]c

)
=

∫

θ∈Sd−1
∞

max
j

θjxj dΦ(θ), (3.9)

this equality being obtained from the change of variable (3.7) , see e.g. Proposition 5.11 in
Resnick (1987). Recall that here and beyond, operators on vectors are understood component-
wise, so that x−1 = (x−11 , . . . , x1

d). The angular measure can be seen as the asymptotic
conditional distribution of the ‘angle’ Θ given that the radius R is large, up to the normalizing
constant Φ(Sd−1

∞ ). Indeed, dropping the dependence on V for convenience, we have for any
continuity set A of Φ,

P(Θ ∈ A | R > r) =
rP(Θ ∈ A,R > r)

rP(R > r)
−−−→
r→∞

Φ(A)

Φ(Sd−1∞ )
. (3.10)
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The choice of the marginal standardization is somewhat arbitrary and alternative standardiza-
tions lead to different limits. Another common choice consists in considering ‘nearly uni-
form’ variables (namely, uniform variables when the margins are continuous): defining U by
U j = 1 − Fj(X

j) for j ∈ {1, . . . , d}, condition (3.5) is equivalent to each of the following
conditions:

• U has ‘inverse multivariate regular variation’ with limit measure Λ( · ) := µ(( · )−1),
namely, for every measurable set A bounded away from +∞ which is a continuity set
of Λ,

t P
(
U ∈ t−1A

)
−−−→
t→∞

Λ(A) = µ(A−1), (3.11)

where A−1 = {u ∈ Rd
+ : (u−11 , . . . , u−1d ) ∈ A}. The limit measure Λ is finite on sets

bounded away from {+∞}.

• The stable tail dependence function (STDF) defined for x ∈ [0,∞],x 6= ∞ by

l(x) = lim
t→0

t−1P
(
U1 ≤ t x1 or . . . or Ud ≤ t xd

)
= µ

(
[0,x−1]c

)
(3.12)

exists.

As a conclusion, in multivariate extremes, the focus is on the dependence structure which is
characterized by different quantities, such as the exponent measure µ (itself characterized by
its angular part Φ) or the STDF, which is closely linked to other integrated version of µ such as
extreme-value copula or tail copula. For details on such functionals, see Segers (2012b). The
fact that these quantities characterize the dependence structure can be illustrated by the link
they exhibit between the multivariate GEV G(x) and the marginal ones Gj(xj), 1 ≤ j ≤ d,

− logG(x) = µ

([
0,

( −1

logG1(x1)
, . . . ,

−1

logGd(xd)

)]c)
for the exponent measure,

− logG(x) = l(− logG1(x1), . . . ,− logGd(xd)) for the STDF,

G(x) = C(G1(x1), . . . , Gd(xd)) for the extreme value copula C.

In Chapter 6, we develop non-asymptotic bounds for non-parametric estimation of the STDF.
As in many applications, it can be more convenient to work with the angular measure itself –
the latter gives more direct information on the dependence structure –, Chapter 7 generalizes
the study in Chapter 6 to the angular measure.



CHAPTER 4
Background on classical Anomaly Detection algorithms

Abstract In this chapter, we review some very classical anomaly detection algorithms used
in the benchmarks of chapters 9 and 8. We also introduce the reader to the scikit-learn library
used for illustrative examples, and present relative (implementative) contributions of this
thesis.

Note: The work on scikit-learn was supervised by Alexandre Gramfort and is the result of a
collaboration with the Paris Saclay Center for Data Science. It includes the implementation of
Isolation Forest (Section 4.2.3) and Local Outlier Factor (Section 4.2.2) algorithms, as well as
a participation to the scikit-learn maintenance and pull requests review.

4.1 What is Anomaly Detection?

Anomaly Detection generally consists in assuming that the dataset under study contains a small
number of anomalies, generated by distribution models that differ from the one generating the
vast majority of the data. This formulation motivates many statistical anomaly detection meth-
ods, based on the underlying assumption that anomalies occur in low probability regions of the
data generating process. Here and hereafter, the term ‘normal data’ does not refer to Gaussian
distributed data, but to not abnormal ones, i.e. data belonging to the above mentioned major-
ity. We also call them sometimes inliers, while abnormal data are called outliers. Classical
parametric techniques, like those developed by Barnett & Lewis (1994) and Eskin (2000), as-
sume that the normal data are generated by a distribution belonging to some specific, known in
advance parametric model. The most popular non-parametric approaches include algorithms
based on density (level set) estimation (Breunig et al., 2000; Schölkopf et al., 2001; Steinwart
et al., 2005; Scott & Nowak, 2006; Vert & Vert, 2006), on dimensionality reduction (Shyu
et al., 2003; Aggarwal & Yu, 2001) or on decision trees (Liu et al., 2008; Désir et al., 2012;
Shi & Horvath, 2012). One may refer to Hodge & Austin (2004); Chandola et al. (2009);
Patcha & Park (2007); Markou & Singh (2003) for overviews of current research on Anomaly
Detection, ad-hoc techniques being far too numerous to be listed here in an exhaustive manner.

Most usual anomaly detection algorithms actually provide more than a predicted label for
any new observation, abnormal/normal. Instead, they return a real valued function, termed a
scoring function, defining a pre-order/ranking on the input space. Such a function permits to
rank any observations according to their supposed ‘degree of abnormality’ and thresholding
it yields a decision rule that splits the input space into ‘normal’ and ‘abnormal’ regions. In
various fields (e.g. fleet management, monitoring of energy/transportation networks), when
confronted with massive data, being able to rank observations according to their degree of
abnormality may significantly improve operational processes and allow for a prioritization of
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actions to be taken, especially in situations where human expertise is required to check each
observation is time-consuming.

From a machine learning perspective, anomaly detection can be considered as a specific clas-
sification/ranking task, where the usual assumption in supervised learning stipulating that the
dataset contains structural information regarding all classes breaks down, see Roberts (1999).
This typically happens in the case of two highly unbalanced classes: the normal class is ex-
pected to regroup a large majority of the dataset, so that the very small number of points
representing the abnormal class does not allow to learn information about this class. In a clus-
tering based approach, it can be interpreted as the presence of a single cluster, corresponding
to the normal data. The abnormal ones are too limited to share a common structure, i.e. to form
a second cluster. Their only characteristic is precisely to lie outside the normal cluster, namely
to lack any structure. Thus, common classification approaches may not be applied as such,
even in a supervised context. Supervised anomaly detection consists in training the algorithm
on a labeled (normal/abnormal) dataset including both normal and abnormal observations.
In the novelty detection framework (also called one-class classification or semi-supervised
anomaly detection), only normal data are available for training. This is the case in applications
where normal operations are known but intrusion/attacks/viruses are unknown and should be
detected. In the unsupervised setup (also called outlier detection), no assumption is made on
the data which consist in unlabeled normal and abnormal instances. In general, a method from
the novelty detection framework may apply to the unsupervised one, as soon as the number
of anomalies is sufficiently weak to prevent the algorithm from fitting them when learning the
normal behavior. Such a method should be robust to outlying observations.

Let us also mention the so-called semi-supervised novelty detection (Blanchard et al., 2010;
Smola et al., 2009) framework which is closely linked to the PU learning framework (Denis
et al., 2005; Liu et al., 2002; Mordelet & Vert, 2014; du Plessis et al., 2015). Semi-supervised
novelty detection consists in learning from negative and unsupervised examples, while PU
learning consists in learning from positive (P) and unlabeled (U) examples. These hybrid
approaches assume that both an unlabeled sample and a sample from one class are available.

In this thesis, we basically place ourselves in the novelty detection framework, although some
benchmarks are also done on (unlabeled) training data polluted by outliers, namely in the
unsupervised framework.

4.2 Three efficient Anomaly Detection Algorithms

4.2.1 One-class SVM

The SVM algorithm is essentially a two-class algorithm (i.e. one needs negative as well as
positive examples). Schölkopf et al. (2001) extended the SVM methodology to handle training
using only positive information: the One-Class Support Vector Machine (OCSVM) treats the
origin as the only member of the second class (after mapping the data to some feature space).
Thus the OCSVM finds a separating hyperplane between the origin and the mapped one class.

The OCSVM consists in estimating Minimum Volume sets, which amounts (if the density has
no flat parts) to estimating density level sets, as mentioned in the introduction. In Vert & Vert
(2006), it is shown that the OCSVM is a consistent estimator of density level sets, and that
the solution function returned by the OCSVM gives an estimate of the tail of the underlying
density.
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Figures 4.1 and 4.2 summarizes the theoretical insights of OCSVM compared to the standard
SVM, respectively for the hard-margin (no error is tolerated during training) and soft-margin
separation (some margin errors are tolerated in training).

TABLE 4.1: SVM vs. OCSVM (hard-margin separation)

SVM OCSVM

min
w,b

1

2
‖w‖2 min

w

1

2
‖w‖2

s.t ∀i, yi(〈w, xi〉+ b) ≥ 1 s.t ∀i, 〈w, xi〉 ≥ 1

decision function: decision function:

f(x) = sgn(〈w, x〉+ b) (red line) f(x) = sgn(〈w, x〉 − 1) (green line)

-Lagrange multipliers: αi (αi > 0 when the constraint is an equality for xi)

-Support vectors: SV = {xi, αi > 0}
-Margin errors: ME = ∅

w =
∑

i

αiyixi w =
∑

i

αixi

In the ν-soft margin separation framework, letting Φ be the mapping function determined by
a kernel function k (i.e. k(x, y) = 〈Φ(x),Φ(y)〉), the separating hyperplane defined w.r.t. a
vector w and an offset ρ is given by the solution of

min
w,ξ,ρ

1

2
‖w‖2 + 1

n

n∑

i=1

ξi − νρ

s.t. 〈w,Φ(xi)〉 ≥ ρ− ξi , 1 ≤ i ≤ n

ξi ≥ 0,

where ν is previously set. An interesting fact is that ν is an upper bound on the fraction of
outliers and a lower bound on the fraction of support vectors, both of which converging to ν
almost surely as n → ∞ (under some continuity assumption). Then, the empirical mass of
the estimated level set is greater than 1 − ν and converges almost surely to 1 − ν as n tends
to infinity. Hence one usual approach is to choose ν = 1− α to estimate a MV-set with mass
(at least) α. For insights on the calibration of One-Class SVM, see for instance Thomas et al.
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TABLE 4.2: SVM vs. OCSVM (ν-soft margin separation)

SVM OCSVM

min
w,ξ,ρ,b

1

2
‖w‖2 + 1

n

n∑

i=1

ξi − νρ min
w,ξ,ρ

1

2
‖w‖2 + 1

n

n∑

i=1

ξi − νρ

s.t ∀i, yi(〈w, xi〉 + b) ≥ ρ− ξi s.t ∀i, 〈w, xi〉 ≥ ρ− ξi

ξi ≥ 0 ξi ≥ 0

decision function: decision function:

f(x) = sgn(〈w, x〉+ b) (red line) f(x) = sgn(〈w, x〉 − ρ) (green line)

-Lagrange multipliers: αi, βi (one for each constraint, βi > 0 when ξi = 0)

-Support vectors: SV = {xi, αi > 0}
-Margin errors: ME = {xi, ξi > 0} = {xi, βi > 0} (for OCSVM, ME=anomalies)

-SV \ ME = {xi, αi, βi > 0}

w =
∑

i αiyixi w =
∑

i αixi

|ME|
n

≤ ν ≤ |SV|
n

ρ = 〈w, xi〉 ∀xi ∈ SV \ ME

(2015). The OCSVM is mainly applied with Gaussian kernels and its performance highly de-
pends on the kernel bandwidth selection. The complexity of OCSVM training is the same as
for the standard SVM, namely O(n3d) where n is the number of samples and d the dimension
of the input space. However, one can often expect a complexity of O(n2d), see Bottou & Lin
(2007). From its linear complexity w.r.t. the number of features d, OCSVM scales well in large
dimension, and performance remains good even when the dimension is greater than n. By us-
ing only a small subset of the training dataset (support vectors) in the decision function, it is
memory efficient. However, OCSVM suffers from practical limitation: 1) the non-linear train-
ing complexity in the number of observations, which limits its use on very large datasets; 2)
its sensitivity to the parameter ν and to the kernel bandwidth, which makes calibration tricky;
3) parametrization of the mass of the MV set estimated by the OCSVM via the parameter ν
does not allow to obtain nested set estimates as the mass α increases.
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4.2.2 Local Outlier Factor algorithm

One other very efficient way of performing outlier detection in datasets whose dimension is
moderately large is to use the Local Outlier Factor (LOF) algorithm proposed in Breunig et al.
(2000).

This algorithm computes a score reflecting the degree of abnormality of the observations,
the so-called local outlier factor. It measures the local deviation of a given data point with
respect to its neighbors. By comparing the local density near a sample to the local densities
of its neighbors, one can identify points which have a substantially lower density than their
neighbors. These are considered to be outliers.

In practice the local density is obtained from the k-nearest neighbors. The LOF score of an
observation is equal to the ratio of the average local density of his k-nearest neighbors, and his
own local density: a normal instance is expected to have a local density similar to that of its
neighbors, while abnormal data are expected to have much smaller local density.

The strength of the LOF algorithm is that it takes both local and global properties of datasets
into consideration: it can perform well even in datasets where abnormal samples have different
underlying densities. The question is not, how isolated the sample is, but how isolated it is with
respect to the surrounding neighborhood.

4.2.3 Isolation Forest

One efficient way of performing outlier detection in high-dimensional datasets is to use random
forests. The IsolationForest proposed in Liu et al. (2008) ’isolates’ observations by randomly
selecting a feature and then randomly selecting a split value between the maximum and min-
imum values of the selected feature. Since recursive partitioning can be represented by a tree
structure, the number of splittings required to isolate a sample is equivalent to the path length
from the root node to the terminating node. This path length, averaged over a forest of such
random trees, is a measure of abnormality. The scoring function is based on this averaged
depth. Random partitioning produces noticeable shorter paths for anomalies, see figures 4.2
and 4.3. Moreover, the average depth of a sample over the forest seems to converge to some
limits, the latter being different whether the sample is or not an anomaly. Hence, when a for-
est of random trees collectively produces shorter path lengths for particular samples, they are
highly likely to be anomalies.

4.3 Examples through scikit-learn

This section provides examples on the anomaly detection algorithms presented above through
the scikit-learn python library.

As mentioned in the introduction, contribution of this thesis includes the implemention of two
classical anomaly detection algorithms on the open-source scikit-learn library (Pedregosa et al.
(2011)), namely the Isolation Forest algorithm (Liu et al. (2008)) and the Local Outlier Factor
algorithm (Breunig et al. (2000)). This work was supervised by Alexandre Gramfort and is
the result of a collaboration with the Paris Saclay Center for Data Science. It also includes
participation to the scikit-learn maintenance and pull requests review.
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4.3.1 What is scikit-learn?

Scikit-learn, see Pedregosa et al. (2011), is an open-source library which provides well-
established machine learning methods. It is a Python module, the latter language being very
popular for scientific computing, thanks to its high-level interactive nature. Python is enjoying
this recent years a strong expansion both in academic and industrial settings. Scikit-learn takes
advantage of this favorable backdrop and extends this general-purpose programming language
with machine learning operation: It not only provides implementations of many established
algorithms, both supervised and unsupervised, while keeping an easy-to-use interface tightly
integrated with the Python language. But it also provides a composition mechanism (through
a Pipeline object) to combine estimators, preprocessing tools and model selection methods in
such a way that the user can easily construct complex ad-hoc algorithms.

Scikit-learn depends only on numpy (the base data structure used for data and model parame-
ters, see Van Der Walt et al. (2011)) and scipy (to handle common numerical operations, see
Jones et al. (2015)). Most of the Scikit-learn package is written in python and cython, a com-
piled programming language for combining C in Python to achieve the performance of C with
high-level programming in Python-like syntax.

The development is done on github1, a Git repository hosting service which facilitates collab-
oration, as coding is done in strong interaction with other developers. Because of the large
number them, emphasis is put on keeping the project maintainable, e.g. by avoiding duplicat-
ing code.

Scikit-learn benefits from a simple and consistent API (Application Programming Interface),
see Buitinck et al. (2013), through the estimator interface. This interface is followed by all
(supervised and unsupervised) learning algorithms as well as other tasks such as preprocessing,
feature extraction and selection. The central object estimator implements a fit method to learn
from training data, taking as argument an input data array (and optionally an array of labels for
supervised problems). The initialization of the estimator is done separately, before training, in
such a way the constructor doesn’t see any data and can be seen as a function taking as input the
model hyper-parameters and returning the learning algorithm initialized with these parameters.
Relevant default parameters are provided for each algorithm. To illustrate initialization and fit
steps, the snippet below considers an anomaly detection learning task with the Isolation Forest
algorithm.

# Import the IsolationForest algorithm from the ensemble module

from sklearn.ensemble import IsolationForest

# Instantiate with specified hyper-parameters

IF = IsolationForest(n_trees=100, max_samples=256)

# Fit the model on training data (build the trees of the forest)

IF.fit(X_train)

In this code example, the Isolation Forest algorithm is imported from the ensemble module
of scikit-learn, which contains the ensemble-based estimators such as bagging or boosting
methods. Then, an IsolationForest instance IF is initialized with a number of trees of 100
(see Section 4.2.3 for details on this algorithm). Finally, the model is learned from training
data X_train and stored on the IF object for later use. Since all estimators share the same
API, it is possible to train a Local Outlier Factor algorithm by simply replacing the constructor
name IsolationForest(n_trees = 100) in the snippet above by LocalOutlierFactor().

1https://github.com/scikit-learn
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Some estimators (such as supervised estimators or some of the unsupervised ones, like Iso-
lation Forest and LOF algorithm) are called predictors and implement a predict method that
takes a data array and returns predictions (labels or values computed by the model). Other
estimators (e.g. PCA) are called transformer and implement a transform method returning
modified input data. The following code example illustrates how simple it is to predict labels
with the predictor interface. It suffices to add the line of code below to the previous snippet.

# Perform prediction on new data

y_pred = IF.predict(X_test)

# Here y_pred is a vector of binary labels (+1 if inlier, -1 if abnormal)

4.3.2 LOF examples

The use of LOF algorithm is illustrated in the code example below, returning Figure 4.1.

FIGURE 4.1: LOF example

"""

=================================================

Anomaly detection with Local Outlier Factor (LOF)

=================================================

This example uses the LocalOutlierFactor estimator

for anomaly detection.

"""

import numpy as np

import matplotlib.pyplot as plt

from sklearn.neighbors import LocalOutlierFactor

np.random.seed(42)

# Generate train data

X = 0.3 * np.random.randn(100, 2)
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X_train = np.r_[X + 2, X - 2]

# Generate some regular novel observations

X = 0.3 * np.random.randn(20, 2)

X_test = np.r_[X + 2, X - 2]

# Generate some abnormal novel observations

X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

# fit the model

clf = LocalOutlierFactor()

clf.fit(X_train)

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane

xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.title("Local Outlier Factor (LOF)")

plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c=’white’)

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c=’green’)

c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c=’red’)

plt.axis(’tight’)

plt.xlim((-5, 5))

plt.ylim((-5, 5))

plt.legend([b1, b2, c],

["training observations",

"new regular observations", "new abnormal observations"],

loc="upper left")

plt.show()

4.3.3 Isolation Forest examples

The Isolation Forest strategy is illustrated in the code example below returning Figure 4.4.

FIGURE 4.2: Anomalies are isolated more
quickly

FIGURE 4.3: Convergence of the averaged
depth

"""

==========================================

IsolationForest example

==========================================

An example using IsolationForest for anomaly detection.

"""

import numpy as np
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FIGURE 4.4: Isolation Forest example

import matplotlib.pyplot as plt

from sklearn.ensemble import IsolationForest

rng = np.random.RandomState(42)

# Generate train data

X = 0.3 * rng.randn(100, 2)

X_train = np.r_[X + 2, X - 2]

# Generate some regular novel observations

X = 0.3 * rng.randn(20, 2)

X_test = np.r_[X + 2, X - 2]

# Generate some abnormal novel observations

X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

# fit the model

clf = IsolationForest(max_samples=100, random_state=rng)

clf.fit(X_train)

y_pred_train = clf.predict(X_train)

y_pred_test = clf.predict(X_test)

y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane

xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

plt.title("IsolationForest")

plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c=’white’)

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c=’green’)

c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c=’red’)

plt.axis(’tight’)

plt.xlim((-5, 5))

plt.ylim((-5, 5))

plt.legend([b1, b2, c],

["training observations",

"new regular observations", "new abnormal observations"],

loc="upper left")

plt.show()
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4.3.4 Comparison examples

As a conclusion, Figures 4.5, 4.6 and 4.7 draw a comparison of the three anomaly detection
algorithms introduced in this section:

- the One-Class SVM is able to capture the shape of the data set, hence performing well when
the data is strongly non-Gaussian, i.e. with two well-separated clusters;

- the Isolation Forest algorithm, is adapted to large-dimensional settings, even if it performs
quite well in the examples below.

- the Local Outlier Factor measures the local deviation of a given data point with respect to its
neighbors by comparing their local density.

The ground truth about inliers and outliers is given by the points colors while the orange-filled
area indicates which points are reported as inliers by each method.

Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using
the ‘predict’ method of the objects, we set the threshold on the decision function to sepa-
rate out the corresponding fraction. Anomalies are uniformly drawn according to an uniform
distribution.

FIGURE 4.5: Gaussian normal data with one single mode
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FIGURE 4.6: Gaussian normal data with two modes

FIGURE 4.7: Gaussian normal data with two strongly separate modes

"""

==========================================

Outlier detection with several methods.

==========================================

"""

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.font_manager

from scipy import stats

from sklearn import svm

from sklearn.covariance import EllipticEnvelope

from sklearn.ensemble import IsolationForest

from sklearn.neighbors import LocalOutlierFactor

rng = np.random.RandomState(42)

# Example settings

n_samples = 200

outliers_fraction = 0.25

clusters_separation = [0, 1, 2]

# define two outlier detection tools to be compared
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classifiers = {

"One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,

kernel="rbf", gamma=0.1),

#"robust covariance estimator": EllipticEnvelope(contamination=.25),

"Isolation Forest": IsolationForest(random_state=rng),

"Local Outlier Factor": LocalOutlierFactor(n_neighbors=35, contamination=0.25)}

# Compare given classifiers under given settings

xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100))

n_inliers = int((1. - outliers_fraction) * n_samples)

n_outliers = int(outliers_fraction * n_samples)

ground_truth = np.ones(n_samples, dtype=int)

ground_truth[-n_outliers:] = 0

# Fit the problem with varying cluster separation

for i, offset in enumerate(clusters_separation):

np.random.seed(42)

# Data generation

X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset

X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset

X = np.r_[X1, X2]

# Add outliers

X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]

# Fit the model

plt.figure(figsize=(10, 5))

for i, (clf_name, clf) in enumerate(classifiers.items()):

# fit the data and tag outliers

clf.fit(X)

y_pred = clf.decision_function(X).ravel()

threshold = stats.scoreatpercentile(y_pred,

100 * outliers_fraction)

y_pred = y_pred > threshold

n_errors = (y_pred != ground_truth).sum()

# plot the levels lines and the points

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

Z = Z.reshape(xx.shape)

subplot = plt.subplot(1, 3, i + 1)

subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),

cmap=plt.cm.Blues_r)

a = subplot.contour(xx, yy, Z, levels=[threshold],

linewidths=2, colors=’red’)

subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],

colors=’orange’)

b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c=’white’)

c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c=’black’)

subplot.axis(’tight’)

subplot.legend(

[a.collections[0], b, c],

[’learned decision function’, ’true inliers’, ’true outliers’],

prop=matplotlib.font_manager.FontProperties(size=10),

loc=’lower right’)

subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))

subplot.set_xlim((-7, 7))

subplot.set_ylim((-7, 7))

plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)

plt.suptitle("Outlier detection")

plt.show()
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CHAPTER 5
On Anomaly Ranking and Excess-Mass Curves

Abstract This chapter presents the details relative to the introducing section 1.3.
Learning how to rank multivariate unlabeled observations depending on their degree of ab-
normality/novelty is a crucial problem in a wide range of applications. In practice, it generally
consists in building a real valued ‘scoring’ function on the feature space so as to quantify to
which extent observations should be considered as abnormal. In the 1-d situation, measure-
ments are generally considered as ‘abnormal’ when they are remote from central measures
such as the mean or the median. Anomaly detection then relies on tail analysis of the vari-
able of interest. Extensions to the multivariate setting are far from straightforward and it is
precisely the main purpose of this chapter to introduce a novel and convenient (functional)
criterion for measuring the performance of a scoring function regarding the anomaly ranking
task, referred to as the Excess-Mass curve (EM curve). In addition, an adaptive algorithm
for building a scoring function based on unlabeled data X1, . . . , Xn with a nearly optimal
EM -curve is proposed and is analyzed from a statistical perspective.

Note: The material of this chapter is based on previous work published in Goix et al. (2015c).

5.1 Introduction

In a great variety of applications (e.g. fraud detection, distributed fleet monitoring, system
management in data centers), it is of crucial importance to address anomaly/novelty issues
from a ranking point of view. In contrast to novelty/anomaly detection (e.g. Koltchinskii
(1997); Vert & Vert (2006); Schölkopf et al. (2001); Steinwart et al. (2005)), novelty/anomaly
ranking is very poorly documented in the statistical learning literature (see Viswanathan et al.
(2012) for instance). However, when confronted with massive data, being enable to rank
observations according to their supposed degree of abnormality may significantly improve
operational processes and allow for a prioritization of actions to be taken, especially in situ-
ations where human expertise required to check each observation is time-consuming. When
univariate, observations are usually considered as ‘abnormal’ when they are either too high
or else too small compared to central measures such as the mean or the median. In this con-
text, anomaly/novelty analysis generally relies on the analysis of the tail distribution of the
variable of interest. No natural (pre) order exists on a d-dimensional feature space, X ⊂ Rd

say, as soon as d > 1. Extension to the multivariate setup is thus far from obvious and, in
practice, the optimal ordering/ranking must be learned from training data X1, . . . , Xn, in
absence of any parametric assumptions on the underlying probability distribution describing
the ‘normal’ regime. The most straightforward manner to define a pre-order on the feature
space X is to transport the natural order on the real half-line through a measurable scoring
function s : X → R+: the ‘smaller’ the score s(X), the more ‘abnormal’ the observation
X is viewed. In the following, to simplify notation we assume that X = Rd. The whys and
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wherefores of scoring functions have been explained in the introduction chapter, Section 1.2.
Estimating good scoring functions is a way to estimate level sets of the underlying density, as
optimal scoring function are those whose induced level sets are exactly the ones of the density.
The basic idea is that we don’t need to estimate the density to obtain such level sets, but only
any increasing transform of the density. Any scoring function defines a pre-order on Rd and
thus a ranking on a set of new observations. An important issue stated in Section 1.2 concerns
the definition of an adequate performance criterion, C(s) say, in order to compare possible
candidate scoring function and to pick one eventually: optimal scoring functions s∗ being then
defined as those optimizing C. Estimating scoring function instead of the density itself pre-
cisely allows to use an other criterion than the distance to the density, which is too stringent
for a level sets estimation purpose: a function having exactly the same level sets as the density
can be very far from the latter using such distance.

Throughout the present article, it is assumed that the distribution F of the observable r.v. X
is absolutely continuous w.r.t. Lebesgue measure Leb on Rd, with density f(x). The criterion
should be thus defined in a way that the collection of level sets of an optimal scoring function
s∗(x) coincides with that related to f . In other words, any non-decreasing transform of the
density should be optimal regarding the ranking performance criterion C. According to the
Empirical Risk Minimization (ERM) paradigm, a scoring function will be built in practice by
optimizing an empirical version Cn(s) of the criterion over an adequate set of scoring functions
S0 of controlled complexity (e.g. a major class of finite VC dimension). Hence, another
desirable property to guarantee the universal consistency of ERM learning strategies is the
uniform convergence of Cn(s) to C(s) over such collections S0 under minimal assumptions on
the distribution F (dx).

As described in Section 1.3.2, a functional criterion referred to as the mass-volume curve
(MV -curve), admissible with respect to the requirements listed above has been introduced
in Clémençon & Jakubowicz (2013), extending somehow the concept of ROC curve in the
unsupervised setup. Relying on the theory of minimum volume sets (see Section 1.3.1), it
has been proved that the scoring functions minimizing empirical and discretized versions of
the MV -curve criterion are accurate when the underlying distribution has compact support
and a first algorithm for building nearly optimal scoring functions, based on the estimate of a
finite collection of properly chosen minimum volume sets, has been introduced and analyzed.
However, as explained in Section 1.3.2, some important drawbacks are inherent to this mass-
volume curve criterion:

1) When used as an performance criterion, the Lebesgue measure of possibly very complex
sets has to be computed.

2) When used as an performance criterion, the pseudo-inverse α−1s (α) may be hard to
compute.

3) When used as a learning criterion (in the ERM paradigm), it produces level sets which
are not necessarily nested, on which may be built inaccurate scoring function.

4) When used as a learning criterion, the learning rates are rather slow (of the order n−1/4

namely), and cannot be established in the unbounded support situation.

Given these limitations, it is the major goal of this chapter to propose an alternative criterion
for anomaly ranking/scoring, called the Excess-Mass curve (EM curve in short) here, based
on the notion of density contour clusters Polonik (1995); Hartigan (1987); Müller & Sawitzki
(1991). Whereas minimum volume sets are solutions of volume minimization problems un-
der mass constraints, the latter are solutions of mass maximization under volume constraints.
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Exchanging this way objective and constraint, the relevance of this performance measure is
thoroughly discussed and accuracy of solutions which optimize statistical counterparts of this
criterion is investigated. More specifically, rate bounds of the order n−1/2 are proved, even
in the case of unbounded support. Additionally, in contrast to the analysis carried out in Clé-
mençon & Jakubowicz (2013), the model bias issue is tackled, insofar as the assumption that
the level sets of the underlying density f(x) belongs to the class of sets used to build the
scoring function is relaxed here.

The rest of this chapter is organized as follows. Section 5.3 introduces the notion of EM
curve and that of optimal EM curve. Estimation in the compact support case is covered by
Section 5.4, extension to distributions with non compact support and control of the model bias
are tackled in Section 5.5. A simulation study is performed in Section 5.6. All proofs are
deferred to the last section 5.7.

5.2 Background and related work

As a first go, we first recall the MV curve criterion approach as introduced in Section 1.3.2,
as a basis for comparison with that promoted in the present contribution.

Recall that S is the set of all scoring functions s : Rd → R+ integrable w.r.t. Lebesgue
measure. Let s ∈ S . As defined in Clémençon & Jakubowicz (2013); Clémençon & Robbiano
(2014), the MV -curve of s is the plot of the mapping

α ∈ (0, 1) 7→ MVs(α) = λs ◦ α−1s (α),

where
αs(t) = P(s(X) ≥ t),

λs(t) = Leb({x ∈ Rd, s(x) ≥ t})
(5.1)

and H−1 denotes the pseudo-inverse of any cdf H : R → (0, 1). This induces a partial
ordering on the set of all scoring functions: s is preferred to s′ if MVs(α) ≤ MVs′(α) for
all α ∈ (0, 1). One may show that MV ∗(α) ≤ MVs(α) for all α ∈ (0, 1) and any scoring
function s, where MV ∗(α) is the optimal value of the constrained minimization problem

min
Γ borelian

Leb(Γ) subject to P(X ∈ Γ) ≥ α. (5.2)

Suppose now that F (dx) has a density f(x) satisfying the following assumptions:

A1 The density f is bounded, i.e. ||f(X)||∞ < +∞ .
A2 The density f has no flat parts: ∀c ≥ 0, P{f(X) = c} = 0 .

One may then show that the curve MV ∗ is actually a MV curve, that is related to
(any increasing transform of) the density f namely: MV ∗ = MVf . In addition, the mini-
mization problem (5.2) has a unique solution Γ∗α of mass α exactly, referred to as minimum
volume set (see Section 1.3.1):

MV ∗(α) = Leb(Γ∗α) and F (Γ∗α) = α.
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Anomaly scoring can be then viewed as the problem of building a scoring function s(x) based
on training data such that MVs is (nearly) minimum everywhere, i.e. minimizing

‖MVs −MV ∗‖∞ := sup
α∈[0,1]

|MVs(α)−MV ∗(α)|.

Since F is unknown, a minimum volume set estimate Γ̂∗α can be defined as the solution of
(5.2) when F is replaced by its empirical version Fn = (1/n)

∑n
i=1 δXi , minimization is

restricted to a collection G of borelian subsets of Rd supposed not too complex but rich enough
to include all density level sets (or reasonable approximations of the latter) and α is replaced
by α−φn, where the tolerance parameter φn is a probabilistic upper bound for the supremum
supΓ∈G |Fn(Γ)− F (Γ)|. Refer to Scott & Nowak (2006) for further details. The set G should
ideally offer statistical and computational advantages both at the same time. Allowing for
fast search on the one hand and being sufficiently complex to capture the geometry of target
density level sets on the other. In Clémençon & Jakubowicz (2013), a method consisting in
preliminarily estimating a collection of minimum volume sets related to target masses 0 <
α1 < . . . < αK < 1 forming a subdivision of (0, 1) based on training data so as to build a
scoring function

s =
∑

k

1x∈Γ̂∗
αk

has been proposed and analyzed. Under adequate assumptions (related to G, the perimeter of
the Γ∗αk

’s and the subdivision step in particular) and for an appropriate choice of K = Kn

either under the very restrictive assumption that F (dx) is compactly supported or else by
restricting the convergence analysis to [0, 1 − ǫ] for ǫ > 0, excluding thus the tail behavior
of the distribution F from the scope of the analysis, rate bounds of the order OP(n

−1/4) have
been established to guarantee the generalization ability of the method.

Figure 5.3 illustrates one problem inherent to the use of the MV curve as a performance
criterion for anomaly scoring in a ‘non asymptotic’ context, due to the prior discretization
along the mass-axis. In the 2-d situation described by Figure 5.3 for instance, given the training
sample and the partition of the feature space depicted, the MV criterion leads to consider the
sequence of empirical minimum volume sets A1, A1 ∪A2, A1 ∪A3, A1 ∪A2 ∪A3 and thus
the scoring function s1(x) = I{x ∈ A1}+ I{x ∈ A1 ∪ A2}+ I{x ∈ A1 ∪ A3}, whereas the
scoring function s2(x) = I{x ∈ A1}+ I{x ∈ A1 ∪A3} is clearly more accurate.

In this work, a different functional criterion is proposed, obtained by exchanging objective
and constraint functions in (5.2), and it is shown that optimization of an empirical discretized
version of this performance measure yields scoring rules with convergence rates of the order
OP(1/

√
n). In addition, the results can be extended to the situation where the support of the

distribution F is not compact.

5.3 The Excess-Mass curve

As introduced in Section 1.3.3, the performance criterion we propose in order to evaluate
anomaly scoring accuracy relies on the notion of excess mass and density contour clusters,
as introduced in the seminal contribution Polonik (1995). The main idea is to consider a
Lagrangian formulation of a constrained minimization problem, obtained by exchanging con-
straint and objective in (5.2): for t > 0,

max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)} . (5.3)
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We denote by Ω∗t any solution of this problem. As shall be seen in the subsequent analysis (see
Proposition 5.6 below), compared to the MV curve approach, this formulation offers certain
computational and theoretical advantages both at the same time: when letting (a discretized
version of) the Lagrangian multiplier t increase from 0 to infinity, one may easily obtain so-
lutions of empirical counterparts of (5.3) forming a nested sequence of subsets of the feature
space, avoiding thus deteriorating rate bounds by transforming the empirical solutions so as to
force monotonicity.

Definition 5.1. (OPTIMAL EM CURVE) The optimal Excess-Mass curve related to a given
probability distribution F (dx) is defined as the plot of the mapping

t > 0 7→ EM∗(t) := max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)}.

Equipped with the notation above, we have: EM∗(t) = P(X ∈ Ω∗t )− tLeb(Ω∗t ) for all t > 0.
Notice also that EM∗(t) = 0 for any t > ‖f‖∞ := supx∈Rd |f(x)|.

t

EM∗(t)

||f ||∞

1

0

Corresponding

distributions f :

finite support finite support infinite support

heavy tailed

FIGURE 5.1: EM curves depending on densities
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FIGURE 5.2: Comparison between MV ∗(α) and EM∗(t)
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Lemma 5.2. (ON EXISTENCE AND UNIQUENESS) For any subset Ω∗t solution of (5.3), we
have

{x, f(x) > t} ⊂ Ω∗t ⊂ {x, f(x) ≥ t} almost-everywhere,

and the sets {x, f(x) > t} and {x, f(x) ≥ t} are both solutions of (5.3). In addition, under
assumption A2, the solution is unique:

Ω∗t = {x, f(x) > t} = {x, f(x) ≥ t}.

Observe that the curve EM∗ is always well-defined, since
∫
f≥t(f(x)− t)dx =

∫
f>t(f(x)−

t)dx. We also point out that EM∗(t) = α(t)− tλ(t) for all t > 0, where we set α = αf and
λ = λf where αf and λf are defined in (5.1).

Proposition 5.3. (DERIVATIVE AND CONVEXITY OF EM∗) Suppose that assumptions A1

and A2 are fulfilled. Then, the mapping EM∗ is differentiable and we have for all t > 0:

EM∗
′
(t) = −λ(t).

In addition, the mapping t > 0 7→ λ(t) being decreasing, the curve EM∗ is convex.

We now introduce the concept of Excess-Mass curve of a scoring function s ∈ S .

Definition 5.4. (EM CURVES) The EM curve of s ∈ S w.r.t. the probability distribution
F (dx) of a random variable X is the plot of the mapping

EMs : t ∈ [0,∞[ 7→ sup
A∈{(Ωs,l)l>0}

P(X ∈ A)− tLeb(A), (5.4)

where Ωs,t = {x ∈ Rd, s(x) ≥ t} for all t > 0. One may also write: ∀t > 0, EMs(t) =
supu>0 αs(u) − tλs(u). Finally, under assumption A1, we have EMs(t) = 0 for every
t > ‖f‖∞.

Regarding anomaly scoring, the concept of EM curve naturally induces a partial order on the
set of all scoring functions: ∀(s1, s2) ∈ S2, s1 is said to be more accurate than s2 when ∀t >
0, EMs1(t) ≥ EMs2(t). Observe also that the optimal EM curve introduced in Definition 5.1
is itself the EM curve of a scoring function, the EM curve of any strictly increasing transform
of the density f namely: EM∗ = EMf . Hence, in the unsupervised framework, optimal
scoring functions are those maximizing the EM curve everywhere. In addition, maximizing
EMs can be viewed as recovering a collection of subsets (Ω∗t )t>0 with maximum mass when
penalized by their volume in a linear fashion. An optimal scoring function is then any s ∈ S
with the Ω∗t ’s as level sets, for instance any scoring function of the form

s(x) =

∫ +∞

t=0
1x∈Ω∗

t
a(t)dt, (5.5)

with a(t) > 0 (observe that s(x) = f(x) for a ≡ 1).

Proposition 5.5. (NATURE OF ANOMALY SCORING) Let s ∈ S . The following properties
hold true.

(i) The mapping EMs is non increasing on (0,+∞), takes its values in [0, 1] and satisfies,
EMs(t) ≤ EM∗(t) for all t ≥ 0.
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(ii) For t ≥ 0, we have for any ǫ > 0,

inf
u>0

ǫLeb({s > u}∆ǫ{f > t}) ≤ EM∗(t)−EMs(t) ≤ ‖f‖∞ inf
u>0

Leb({s > u}∆{f > t}),

where {s > u}∆ǫ{f > t} := {f > t + ǫ} \ {s > u} ⊔ {s > u} \ {f > t − ǫ}
should be interpreted as a symmetric difference with ‘an ǫ tolerance’.

(iii) Let ǫ > 0. Suppose that the quantity supu>ǫ

∫
f−1({u}) 1/‖∇f(x)‖ dµ(x) is bounded,

where µ denotes the (d − 1)-dimensional Hausdorff measure. Set ǫ1 := infT ‖f − T ◦
s‖∞, where the infimum is taken over the set T of all borelian increasing transforms
T : R+ → R+. Then,

sup
t∈[ǫ+ǫ1,‖f‖∞]

|EM∗(t)− EMs(t)| ≤ C1 inf
T∈T

‖f − T ◦ s‖∞,

where C1 = C(ǫ1, f) is a constant independent from s(x).

Assertion (ii) provides a control of the point-wise difference between the optimal EM curve
and EMs in terms of the error made when recovering a specific minimum volume set Ω∗t by a
level set of s(x). Thus the quantity EM∗(t)− EMs(t) measures how well level sets of s can
approximate those of the underlying density. Assertion (iii) reveals that, if a certain increasing
transform of a given scoring function s(x) approximates well the density f(x), then s(x) is
an accurate scoring function w.r.t. the EM criterion. As the distribution F (dx) is generally
unknown, EM curves must be estimated. Let s ∈ S and X1, . . . , Xn be an i.i.d. sample
with common distribution F (dx) and set α̂s(t) = (1/n)

∑n
i=1 1s(Xi)≥t. The empirical EM

curve of s is then defined as

ÊM s(t) = sup
u>0

{α̂s(u)− tλs(u)} .

In practice, it may be difficult to estimate the volume λs(u) and Monte-Carlo approximation
can naturally be used for this purpose.

5.4 A general approach to learn a scoring function

The concept of EM -curve provides a simple way to compare scoring functions but optimizing
such a functional criterion is far from straightforward. As in Clémençon & Jakubowicz (2013),
we propose to discretize the continuum of optimization problems and to construct a nearly
optimal scoring function with level sets built by solving a finite collection of empirical versions
of problem (5.3) over a subclass G of borelian subsets. In order to analyze the accuracy of this
approach, we introduce the following additional assumptions.

A3 All minimum volume sets belong to G:

∀t > 0, Ω∗t ∈ G .

A4 The Rademacher average

Rn = E

[
sup
Ω∈G

1

n

∣∣∣∣∣
n∑

i=1

ǫi1Xi∈Ω

∣∣∣∣∣

]
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is of order OP(n
−1/2), where (ǫi)i≥1 is a Rademacher chaos independent of the Xi’s.

Assumption A4 is very general and is fulfilled in particular when G is of finite VC dimension,
see Koltchinskii (2006), whereas the zero bias assumption A3 is in contrast very restrictive. It
will be relaxed in Section 5.5.

Let δ ∈ (0, 1) and consider the complexity penalty Φn(δ) = 2Rn +

√
log(1/δ)

2n . We have for
all n ≥ 1:

P

({
sup
G∈G

(|P (G)− Pn(G)| − Φn(δ)) > 0

})
≤ δ, (5.6)

see Koltchinskii (2006) for instance. Denote by Fn = (1/n)
∑n

i=1 δXi the empirical measure
based on the training sample X1, . . . , Xn. For t ≥ 0, define also the signed measures:

Ht( · ) = F ( · )− tLeb( · )
and Hn,t( · ) = Fn( · )− tLeb( · ).

Equipped with these notations, for any s ∈ S , we point out that one may write EM∗(t) =
supu≥0Ht({x ∈ Rd, f(x) ≥ u}) and EMs(t) = supu≥0Ht({x ∈ Rd, s(x) ≥ u}). Let

K > 0 and 0 < tK < tK−1 < . . . < t1. For k in {1, . . . , K}, let Ω̂tk be an empirical
tk-cluster, that is to say a borelian subset of Rd such that

Ω̂tk ∈ argmax
Ω∈G

Hn,tk(Ω).

The empirical excess mass at level tk is then Hn,tk(Ω̂tk). The following result reveals the
benefit of viewing density level sets as solutions of (5.3) rather than solutions of (5.2) (corre-
sponding to a different parametrization of the thresholds).

Proposition 5.6. (MONOTONICITY) For any k in {1, . . . , K}, the subsets ∪i≤kΩ̂ti and
∩i≥kΩ̂ti are still empirical tk-clusters, just like Ω̂tk :

Hn,tk(∪i≤kΩ̂ti) = Hn,tk(∩i≥kΩ̂ti) = Hn,tk(Ω̂tk).

The result above shows that monotonous (regarding the inclusion) collections of empirical
clusters can always be built. Coming back to the example depicted by Figure 5.3, as t de-
creases, the Ω̂t’s are successively equal to A1, A1 ∪ A3, and A1 ∪ A3 ∪ A2, and are thus
monotone as expected. This way, one fully avoids the problem inherent to the prior speci-
fication of a subdivision of the mass-axis in the MV -curve minimization approach (see the
discussion in Section 5.2).

Consider an increasing sequence of empirical tk clusters (Ω̂tk)1≤k≤K and a scoring function
s ∈ S of the form

sK(x) :=

K∑

k=1

ak1x∈Ω̂tk
, (5.7)

where ak > 0 for every k ∈ {1, . . . , K}. Notice that the scoring function (5.7) can be seen
as a Riemann sum approximation of (5.5) when ak = a(tk) − a(tk+1). For simplicity solely,
we take ak = tk − tk+1 so that the Ω̂tk ’s are tk-level sets of sK , i.e Ω̂tk = {s ≥ tk} and
{s ≥ t} = Ω̂tk if t ∈]tk+1, tk]. Observe that the results established in this work remain true
for other choices. In the asymptotic framework considered in the subsequent analysis, it is
stipulated that K = Kn → ∞ as n → +∞. We assume in addition that

∑∞
k=1 ak < ∞.
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Remark 5.7. (NESTED SEQUENCES) For L ≤ K, we have {ΩsL,l, l ≥ 0} = (Ω̂tk)0≤k≤L ⊂
(Ω̂tk)0≤k≤K = {ΩsK ,l, l ≥ 0}, so that by definition, EMsL ≤ EMsK .

Remark 5.8. (RELATED WORK) We point out that a very similar result is proved in Polonik
(1998) (see Lemma 2.2 therein) concerning the Lebesgue measure of the symmetric differ-
ences of density clusters.

Remark 5.9. (ALTERNATIVE CONSTRUCTION) It is noteworthy that, in practice, one may
solve the optimization problems Ω̃tk ∈ argmaxΩ∈G Hn,tk(Ω) and next form Ω̂tk = ∪i≤kΩ̃ti .

The following theorem provides rate bounds describing the performance of the scoring func-
tion sK thus built with respect to the EM curve criterion in the case where the density f has
compact support.

Theorem 5.10. (COMPACT SUPPORT CASE) Assume that conditions A1, A2, A3 and A4

hold true, and that f has a compact support. Let δ ∈]0, 1[, let (tk)k∈{1, ..., K} be such that
sup1≤k≤K(tk − tk+1) = O(1/

√
n), setting tK+1 = 0. Then, there exists a constant A

independent from the tk’s, n and δ such that, with probability at least 1− δ, we have:

sup
t∈]0,t1]

|EM∗(t)− EMsK (t)| ≤
(
A+

√
2 log(1/δ) + Leb(suppf)

) 1√
n
.

Remark 5.11. (LOCALIZATION) The problem tackled in this work is that of scoring anomalies,
which correspond to observations lying outside of ‘large’ excess mass sets, namely density
clusters with parameter t close to zero. It is thus essential to establish rate bounds for the
quantity supt∈]0,C[ |EM∗(t) − EMsK (t)|, where C > 0 depends on the proportion of the
‘least normal’ data we want to score/rank.

Proof of Theorem 5.10 (Sketch of). The proof results from the following lemma, which does
not use the compact support assumption on f and is the starting point of the extension to the
non compact support case (see Section 5.5.1).

Lemma 5.12. Suppose that assumptions A1, A2, A3 and A4 are fulfilled. Then, for 1 ≤ k ≤
K − 1, there exists a constant A independent from n and δ, such that, with probability at least
1− δ, for t in ]tk+1, tk],

|EM∗(t)− EMsK (t)| ≤
(
A+

√
2 log(1/δ)

) 1√
n

+ λ(tk+1)(tk − tk+1).

The detailed proof of this lemma is in the Detailed Proofs Section 5.7, and is a combination on
the two following results, the second one being a straightforward consequence of the derivative
property of EM∗ (Proposition 5.3):

• With probability at least 1− δ, for k ∈ {1, ...,K},

0 ≤ EM∗(tk)− EMsK (tk) ≤ 2Φn(δ) .

• Let k in {1, ...,K − 1}. Then for every t in ]tk+1, tk],

0 ≤ EM∗(t)− EM∗(tk) ≤ λ(tk+1)(tk − tk+1) .
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5.5 Extensions - Further results

This section is devoted to extend the results of the previous one. We first relax the compact
support assumption and next the one stipulating that all density level sets belong to the class
G, namely A3.

5.5.1 Distributions with non compact support

It is the purpose of this section to show that the algorithm detailed below produces a scoring
function s such that EMs is uniformly close to EM∗ (Theorem 5.14). See Figure 5.3 as an
illustration and a comparison with the MV formulation as used as a way to recover empirical
minimum volume set Γ̂α .

Algorithm 2 Learning a scoring function
Suppose that assumptions A1, A2, A3, A4 hold true.
Let t1 such that maxΩ∈G Hn,t1(Ω) ≥ 0. Fix N > 0. For k = 1, . . . , N ,

1. Find Ω̃tk ∈ argmaxΩ∈G Hn,tk(Ω) ,

2. Define Ω̂tk = ∪i≤kΩ̃ti

3. Set tk+1 =
t1

(1+ 1√
n
)k

for k ≤ N − 1.

In order to reduce the complexity, we may replace steps 1 and 2 with

Ω̂tk ∈ arg max
Ω⊃Ω̂tk−1

Hn,tk(Ω).

The resulting piece-wise constant scoring function is

sN (x) =

N∑

k=1

(tk − tk+1)1x∈Ω̂tk
. (5.8)

The main argument to extend the above results to the case where suppf is not bounded is given
in Lemma 5.12 in Section 5.7. The meshgrid (tk) must be chosen in an adaptive way, in a data-
driven fashion. Let h : R∗+ → R+ be a decreasing function such that limt→0 h(t) = +∞. Just
like the previous approach, the grid is described by a decreasing sequence (tk). Let t1 ≥ 0,
N > 0 and define recursively t1 > t2 > . . . > tN > tN+1 = 0, as well as Ω̂t1 , . . . , Ω̂tN ,
through

tk+1 = tk − (
√
n)−1

1

h(tk+1)
(5.9)

Ω̂tk = argmax
Ω∈G

Hn,tk(Ω), (5.10)

with the property that Ω̂tk+1
⊃ Ω̂tk . As pointed out in Remark 5.9, it suffices to take Ω̂tk+1

=

Ω̃tk+1
∪ Ω̂tk , where Ω̃tk+1

= argmaxΩ∈G Hn,tk(Ω). This yields the scoring function sN
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FIGURE 5.3: Unsuccessful mass-volume criterion optimization

Sample of n = 20 points in a 2-d space, partitioned into three rectangles. As α increases, the minimum
volume sets Γ̂α are successively equal to A1, A1 ∪ A2, A1 ∪ A3, and A1 ∪ A3 ∪ A2, whereas,
in the excess-mass approach, as t decreases, the Ω̂t’s are successively equal to A1, A1 ∪ A3, and
A1 ∪A3 ∪A2.

defined by (5.8) such that by virtue of Lemma 5.12 (see technical details in Section 5.7), with
probability at least 1− δ,

sup
t∈]tN ,t1]

|EM∗(t)− EMsN (t)| ≤
(
A+

√
2 log(1/δ) + sup

1≤k≤N

λ(tk)

h(tk)

)
1√
n
.

Therefore, if we take h such that λ(t) = O(h(t)) as t → 0, we can assume that λ(t)/h(t) ≤ B
for t in ]0, t1] since λ is decreasing, and we obtain:

sup
t∈]tN ,t1]

|EM∗(t)− EMsN (t)| ≤
(
A+

√
2 log(1/δ)

) 1√
n
. (5.11)

On the other hand from tLeb({f > t}) ≤
∫
f>t f ≤ 1, we have λ(t) ≤ 1/t. Thus h can be

chosen as h(t) := 1/t for t ∈]0, t1]. In this case, (5.10) yields, for k ≥ 2,

tk =
t1

(1 + 1√
n
)k−1

. (5.12)

Remark 5.13. Theorem 5.10 holds true with the tk’s defined as in (5.12) – even if the condition
sup1≤k≤K(tk − tk+1) = O(1/

√
n) is not respected – as soon as tK = O(1/

√
n).

Theorem 5.14. (UNBOUNDED SUPPORT CASE) Suppose that assumptions A1, A2, A3, A4

hold true, let t1 > 0 and for k ≥ 2, consider tk as defined by (5.12), Ωtk by (5.9), and sN
(5.8). Then there is a constant A independent from N , n and δ such that, with probability
larger than 1− δ, we have:

sup
t∈]0,t1]

|EM∗(t)− EMsN (t)| ≤
[
A+

√
2 log(1/δ)

] 1√
n
+ oN (1),

where oN (1) = 1 − EM∗(tN ) represents ‘how much f is heavy tailed’. In addition, sN (x)
converges to s∞(x) :=

∑∞
k=1(tk+1 − tk)1Ω̂tk+1

as N → ∞ and s∞ is such that, for all
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δ ∈ (0, 1), we have with probability at least 1− δ:

sup
t∈]0,t1]

|EM∗(t)− EMs∞(t)| ≤
[
A+

√
2 log(1/δ)

] 1√
n

Proof of Theorem 5.14 (Sketch of). The first assertion is a consequence of (5.11) combined
with the fact that

sup
t∈]0,tN ]

|EM∗(t)− EMsN (t)| ≤ 1− EMsN (tN )

≤ 1− EM∗(tN ) + 2Φn(δ)

holds true with probability at least 1− δ. For the second part, it suffices to observe that sN (x)
(absolutely) converges to s∞ and that, as pointed out in Remark 5.7, EMsN ≤ EMs∞ . For a
detailed proof, see Section 5.7.

5.5.2 Bias analysis

In this subsection, we relax assumption A3. For any collection C of subsets of Rd, σ(C)
denotes here the σ-algebra generated by C. Consider the hypothesis below.

Ã3 There exists a countable sub-collection of G, F = {Fi}i≥1 say, forming a partition of Rd

and such that σ(F ) ⊂ G.

Denote by fF the best approximation (for the L2-norm) of f by piece-wise functions on F ,

fF (x) :=
∑

i≥1
1x∈Fi

1

Leb(Fi)

∫

Fi

f(y)dy .

Then, variants of Theorems 5.10 and 5.14 can be established without assumption A3, as soon
as Ã3 holds true, at the price of the additional term ‖f − fF ‖L1 in the bound, related to the
inherent bias. For illustration purpose, the following result generalizes one of the inequalities
stated in Theorem 5.14:

Theorem 5.15. (BIASED EMPIRICAL CLUSTERS) Suppose that assumptions A1, A2, Ã3,
A4 hold true, let t1 > 0 and for k ≥ 2 consider tk defined by (5.12), Ωtk by (5.9), and sN by
(5.8). Then there is a constant A independent from N , n, δ such that, with probability larger
than 1− δ, we have:

sup
t∈]0,t1]

|EM∗(t)− EMsN (t)| ≤
[
A+

√
2 log(1/δ)

] 1√
n
+ ‖f − fF ‖L1 + oN (1),

where oN (1) = 1− EM∗(tN ).

Remark 5.16. (HYPER-CUBES) In practice, one defines a sequence of models Fl ⊂ Gl indexed
by a tuning parameter l controlling (the inverse of) model complexity, such that ‖f−fFl

‖L1 →
0 as l → 0. For instance, the class Fl could be formed by disjoint hyper-cubes of side length l.

Proof of Theorem 5.15 (Sketch of). The result directly follows from the follow-
ing lemma, which establishes an upper bound for the bias, with the notations
EM∗C (t) := maxΩ∈C Ht(Ω) ≤ EM∗(t) = maxΩ meas.Ht(Ω) for any class of mea-
surable sets C, and F := σ(F ) so that by assumption A3, F ⊂ G. Details are omitted due to
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space limits.

Lemma 5.17. Under assumption Ã3, we have for every t in [0, ‖f‖∞],

0 ≤ EM∗(t)− EM∗F (t) ≤ ‖f − fF ‖L1 .

The model bias EM∗ − EM∗G is then uniformly bounded by ‖f − fF ‖L1 .

To prove this lemma (see Section 5.7 for details), one shows that:

EM∗(t)− EM∗F (t) ≤
∫

f>t
(f − fF ) +

∫

{f>t}\{fF>t}
(fF − t) −

∫

{fF>t}\{f>t}
(fF − t) ,

where we use the fact that for all t > 0, {fF > t} ∈ F and ∀F ∈ F ,
∫
G f =

∫
G fF . It

suffices then to observe that the second and the third term in the bound are non-positive.

5.6 Simulation examples

Algorithm 2 is here implemented from simulated 2-d heavy-tailed data with common density
f(x, y) = 1/2 × 1/(1 + |x|)3 × 1/(1 + |y|)2. The training set is of size n = 105, whereas
the test set counts 106 points. For l > 0, we set Gl = σ(F ) where Fl = {F l

i }i∈Z2 and
F l
i = [li1, li1 + 1] × [li2, li2 + 1] for all i = (i1, i2) ∈ Z2. The bias of the model is thus

bounded by ‖f − fF ‖∞, vanishing as l → 0 (observe that the bias is at most of order l as
soon as f is Lipschitz for instance). The scoring function s is built using the points located in
[−L,L]2 and setting s = 0 outside of [−L,L]2. Practically, one takes L as the maximum norm
value of the points in the training set, or such that an empirical estimate of P(X ∈ [−L,L]2)
is very close to 1 (here one obtains 0.998 for L = 500). The implementation of our algorithm
involves the use of a sparse matrix to store the data in the partition of hyper-cubes, such that
the complexity of the procedure for building the scoring function s and that of the computation
of its empirical EM -curve is very small compared to that needed to compute fFl

and EMfFl
,

which are given here for the sole purpose of quantifying the model bias.

Figure 5.4 illustrates as expected the deterioration of EMs for large l, except for t close to zero:
this corresponds to the model bias. However, Figure 5.5 reveals an ‘over-fitting’ phenomenon
for values of t close to zero, when l is fairly small. This is mainly due to the fact that subsets
involved in the scoring function are then tiny in regions where there are very few observations
(in the tail of the distribution). On the other hand, for the largest values of t, the smallest
values of l give the best results: the smaller the parameter l, the weaker the model bias and no
over-fitting is experienced because of the high local density of the observations. Recalling the
notation EM∗G(t) = maxΩ∈G Ht(Ω) ≤ EM∗(t) = maxΩ meas.Ht(Ω) so that the bias of our
model is EM∗ − EM∗G , Figure 5.6 illustrates the variations of the bias with the wealth of our
model characterized by l the width of the partition by hyper-cubes. Notice that partitions with
small l are not so good approximation for large t, but are performing as well as the other in the
extreme values, namely when t is close to 0. On the top of that, those partitions have the merit
not to over-fit the extreme data, which typically are isolated.

This empirical analysis demonstrates that introducing a notion of adaptivity for the partition
F , with progressively growing bin-width as t decays to zero and as the hyper-cubes are being
selected in the construction of s (which crucially depends on local properties of the empirical
distribution), drastically improves the accuracy of the resulting scoring function in the EM
curve sense.
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FIGURE 5.4: Optimal and realized EM
curves

FIGURE 5.5: Zoom near 0

FIGURE 5.6: EMG for different l

Conclusion

Prolongating the contribution of Clémençon & Jakubowicz (2013), this chapter provides an al-
ternative view (respectively, an other parametrization) of the anomaly scoring problem, leading
to another adaptive method to build scoring functions, which offers theoretical and computa-
tional advantages both at the same time. This novel formulation yields a procedure producing
a nested sequence of empirical density level sets, and exhibits a good performance, even in the
non compact support case. Thus, the main drawbacks of the mass-volume curve criterion listed
in the introduction section are resolved excepting drawback 1). In addition, the model bias has
been incorporated in the rate bound analysis. However, the use of the Excess-Mass criterion to
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measure the quality of a scoring function sn involves the computation of the Lebesgue measure
Leb(sn ≥ u), just as with the Mass-Volume criterion (drawback 1)). This is a major drawback
for its use in high dimensional framework, if no prior knowledge on the form of these level
sets is available.

Illustrations

Note that the scoring function we built in Algorithm 2 is incidentally an estimator of the
density f (usually called the silhouette), since f(x) =

∫∞
0 1f≥tdt =

∫∞
0 1Ω∗

t
dt and s(x) :=∑K

k=1(tk − tk−1)1x∈Ω̂tk
which is a discretization of

∫∞
0 1Ω̂t

dt. This fact is illustrated in

Figure 5.7. Note that the silhouette does not focus on local properties of the density, but only
on its induced pre-order (level sets).

FIGURE 5.7: density and scoring functions

5.7 Detailed Proofs

Proof of Proposition 5.3

Let t > 0. Recall that EM∗(t) = α(t)− tλ(t) where α(t) denote the mass at level t, namely
α(t) = P(f(X) ≥ t), and λ(t) denote the volume at level t, i.e. λ(t) = Leb({x, f(x) ≥ t}).
For h > 0, let A(h) denote the quantity

A(h) =
1

h
(α(t+ h)− α(t))

and

B(h) =
1

h
(λ(t+ h)− λ(t)).

It is straightforward to see that A(h) and B(h) converge when h → 0, and expressing EM∗
′
=

α′(t)−tλ′(t)−λ(t), it suffices to show that α′(t)−tλ′(t) = 0, namely limh→0A(h)−t B(h) =
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0. Yet, we have

A(h)− t B(h) =
1

h

∫

t≤f≤t+h
f − t ≤ 1

h

∫

t≤f≤t+h
h = Leb(t ≤ f ≤ t+ h) → 0

because f has no flat part.

Proof of Lemma 5.2:

On the one hand, for every Ω measurable,

P(X ∈ Ω)− t Leb(Ω) =
∫

Ω
(f(x)− t)dx

≤
∫

Ω∩{f≥t}
(f(x)− t)dx

≤
∫

{f≥t}
(f(x)− t)dx

= P(f(X) ≥ t)− t Leb({f ≥ t}).

It follows that {f ≥ t} ∈ argmaxAmeas. P(X ∈ A)− t Leb(A).

On the other hand, suppose Ω ∈ argmaxA meas. P(X ∈ A) − t Leb(A) and Leb({f >
t} \ Ω) > 0. Then there is ǫ > 0 such that Leb({f > t + ǫ} \ Ω) > 0 (by sub-additivity of
Leb, if it is not the case, then Leb({f > t} \ Ω) = Leb(∪ǫ∈Q+{f > t + ǫ} \ Ω) = 0 ). We
have thus ∫

{f>t}\Ω
(f(x)− t)dx > ǫ.Leb({f > t+ ǫ} \ Ω) > 0 ,

so that
∫

Ω
(f(x)− t)dx ≤

∫

{f>t}
(f(x)− t)dx −

∫

{f>t}\Ω
(f(x)− t)dx

<

∫

{f>t}
(f(x)− t)dx ,

i.e

P(X ∈ Ω)− t Leb(Ω) < P(f(X) ≥ t)− t Leb({x, f(x) ≥ t})

which is a contradiction. Thus, {f > t} ⊂ Ω Leb-almost surely.

To show that Ω∗t ⊂ {x, f(x) ≥ t}, suppose that Leb(Ω∗t ∩ {f < t}) > 0. Then by sub-
additivity of Leb just as above, there is ǫ > 0 such that Leb(Ω∗t ∩ {f < t− ǫ}) > 0 and

∫

Ω∗
t∩{f<t−ǫ}

f − t ≤ −ǫ.Leb(Ω∗t ∩ {f < t− ǫ}) < 0.

It follows that

P(X ∈ Ω∗t )− t Leb(Ω∗t ) < P(X ∈ Ω∗t \ {f < t− ǫ})− t Leb(Ω∗t \ {f < t− ǫ}),

which is a contradiction with the optimality of Ω∗t .
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Proof of Proposition 5.5

Proving the first assertion is immediate, since
∫
f≥t(f(x) − t)dx ≥

∫
s≥t(f(x) − t)dx. Let us

now turn to the second assertion. We have:

EM∗(t)− EMs(t) =

∫

f>t
(f(x)− t)dx − sup

u>0

∫

s>u
(f(x)− t)dx

= inf
u>0

∫

f>t
(f(x)− t)dx −

∫

s>u
(f(x)− t)dx .

Yet,
∫

{f>t}\{s>u}
(f(x)− t)dx+

∫

{s>u}\{f>t}
(t− f(x))dx

≤ (‖f‖∞ − t).Leb
(
{f > t} \ {s > u}

)
+ t Leb

(
{s > u} \ {f > t}

)
,

so we obtain:

EM∗(t)− EMs(t) ≤ max(t, ‖f‖∞ − t) Leb
(
{s > u}∆{f > t}

)

≤ ‖f‖∞.Leb
(
{s > u}∆{f > t}

)
.

The other inequality comes from the fact that
∫

{f>t}\{s>u}
(f(x)− t)dx+

∫

{s>u}\{f>t}
(t− f(x))dx

≥
∫

{f>t+ǫ}\{s>u}
(f(x)− t)dx+

∫

{s>u}\{f>t+ǫ}
(f(x)− t)dx

≥ ǫLeb({f > t+ ǫ} \ {s > u}) + ǫLeb({s > u} \ {f > t+ ǫ})

To prove the third point, note that:

inf
u>0

Leb
(
{s > u}∆{f > t}

)
= inf

Tր
Leb
(
{Ts > t}∆{f > t}

)

Yet,

Leb
(
{Ts > t}∆{f > t}

)
≤ Leb({f > t− ‖Ts− f‖∞}r {f > t+ ‖Ts− f‖∞})
= λ(t− ‖Ts− f‖∞) − λ(t+ ‖Ts− f‖∞)

= −
∫ t+‖Ts−f‖∞

t−‖Ts−f‖∞
λ′(u)du .

On the other hand, we have λ(t) =
∫
Rd 1f(x)≥tdx =

∫
Rd g(x)‖∇f(x)‖dx, where we let

g(x) =
1

‖∇f(x)‖1{x,‖∇f(x)‖>0,f(x)≥t}.
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The co-area formula (see Federer (1969), p.249, th.3.2.12) gives in this case:

λ(t) =

∫

R

du

∫

f−1(u)

1

‖∇f(x)‖1{x,f(x)≥t}dµ(x) =
∫ ∞

t
du

∫

f−1(u)

1

‖∇f(x)‖dµ(x)

so that λ′(t) = −
∫
f−1(u)

1
‖∇f(x)‖dµ(x).

Let ηǫ such that ∀u > ǫ, |λ′(u)| =
∫
f−1(u)

1
‖∇f(x)‖dµ(x) < ηǫ. We obtain:

sup
t∈[ǫ+infTր ‖f−Ts‖∞,‖f‖∞]

EM∗(t)− EMs(t) ≤ 2.ηǫ.‖f‖∞ inf
Tր

‖f − Ts‖∞.

In particular, if infTր ‖f − Ts‖∞ ≤ ǫ1,

sup
[ǫ+ǫ1,‖f‖∞]

|EM∗ − EMs| ≤ 2.ηǫ.‖f‖∞. inf
Tր

‖f − Ts‖∞ .

Proof of Proposition 5.6

Let i in {1, ...,K}. First, note that:

Hn,ti+1(Ω̂ti+1 ∪ Ω̂ti) = Hn,ti+1(Ω̂ti+1) + Hn,ti+1(Ω̂ti r Ω̂ti+1),

Hn,ti(Ω̂ti+1 ∩ Ω̂ti) = Hn,ti(Ω̂ti)−Hn,ti(Ω̂ti r Ω̂ti+1).

It follows that

Hn,ti+1(Ω̂ti+1 ∪ Ω̂ti) + Hn,ti(Ω̂ti+1 ∩ Ω̂ti)

= Hn,ti+1(Ω̂ti+1) + Hn,ti(Ω̂ti) + Hn,ti+1(Ω̂ti \ Ω̂ti+1) − Hn,ti(Ω̂ti \ Ω̂ti+1) ,

with Hn,ti+1(Ω̂ti \ Ω̂ti+1) −Hn,ti(Ω̂ti \ Ω̂ti+1) ≥ 0 since Hn,t is decreasing in t. But on the
other hand, by definition of Ω̂ti+1 and Ω̂ti we have:

Hn,ti+1(Ω̂ti+1 ∪ Ω̂ti) ≤ Hn,ti+1(Ω̂ti+1) ,

Hn,ti(Ω̂ti+1 ∩ Ω̂ti) ≤ Hn,ti(Ω̂ti) .

Finally we get:

Hn,ti+1(Ω̂ti+1 ∪ Ω̂ti) = Hn,ti+1(Ω̂ti+1) ,

Hn,ti(Ω̂ti+1 ∩ Ω̂ti) = Hn,ti(Ω̂ti) .

Proceeding by induction we have, for every m such that k +m ≤ K:

Hn,ti+m(Ω̂ti ∪ Ω̂ti+1 ∪ ... ∪ Ω̂ti+m) = Hn,ti+m(Ω̂ti+m) ,

Hn,ti(Ω̂ti ∩ Ω̂ti+1 ∩ ... ∩ Ω̂ti+m) = Hn,ti(Ω̂ti) .

Taking (i = 1,m = k − 1) for the first equation and (i = k,m = K − k) for the second
completes the proof.
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Proof of Theorem 5.10

We shall use the following lemma:

Lemma 5.18. With probability at least 1− δ, for k ∈ {1, ...,K},

0 ≤ EM∗(tk)− EMsK (tk) ≤ 2Φn(δ).

Proof of Lemma 5.18:

Remember that by definition of Ω̂tk : Hn,tk(Ω̂tk) = maxΩ∈G Hn,tk(Ω) and note that:

EM∗(tk) = max
Ω meas.

Htk(Ω) = max
Ω∈G

Htk(Ω) ≥ Htk(Ω̂tk).

On the other hand, using (5.6), with probability at least 1 − δ, for every G ∈ G, |P(G) −
Pn(G)| ≤ Φn(δ). Hence, with probability at least 1− δ, for all Ω ∈ G :

Hn,tk(Ω)− Φn(δ) ≤ Htk(Ω) ≤ Hn,tk(Ω) + Φn(δ)

so that, with probability at least (1− δ), for k ∈ {1, . . . ,K},

Hn,tk(Ω̂tk)− Φn(δ) ≤ Htk(Ω̂tk) ≤ EM∗(tk) ≤ Hn,tk(Ω̂tk) + Φn(δ) ,

whereby, with probability at least (1− δ), for k ∈ {1, . . . ,K},

0 ≤ EM∗(tk)−Htk(Ω̂tk) ≤ 2Φn(δ) .

The following Lemma is a consequence of the derivative property of EM∗ (Proposition 5.3) .

Lemma 5.19. Let k in {1, ...,K − 1}. Then for every t in ]tk+1, tk],

0 ≤ EM∗(t)− EM∗(tk) ≤ λ(tk+1)(tk − tk+1).

Combined with Lemma 5.18 and the fact that EMsK is non-increasing, and writing

EM∗(t)− EMsK (t) = (EM∗(t)− EM∗(tk)) + (EM∗(tk) − EMsK (tk))

+ (EMsK (tk) − EMsK (t))

this result leads to:

∀k ∈ {0, ...,K − 1}, ∀t ∈ ]tk+1, tk],

0 ≤ EM∗(t)− EMsK (t) ≤ 2Φn(δ) + λ(tk+1)(tk − tk+1)

which gives Lemma 5.12 stated in the sketch of proof. Notice that we have not yet used the
fact that f has a compact support.

The compactness support assumption allows an extension of Lemma 5.19 to k = K,
namely the inequality holds true for t in ]tK+1, tK ] =]0, tK ] as soon as we let λ(tK+1) :=
Leb(suppf). Indeed the compactness of suppf implies that λ(t) → Leb(suppf) as t → 0.
Observing that Lemma 5.18 already contains the case k = K, this leads to, for k in {0, ...,K}
and t ∈ ]tk+1, tk], |EM∗(t)−EMsK (t)| ≤ 2Φn(δ)+λ(tk+1)(tk−tk+1). Therefore, λ being
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a decreasing function bounded by Leb(suppf), we obtain the following: with probability at
least 1− δ, we have for all t in ]0, t1],

|EM∗(t)− EMsK (t)| ≤
(
A+

√
2 log(1/δ)

) 1√
n

+ Leb(suppf) sup
1≤k≤K

(tk − tk+1).

Proof of Theorem 5.14

The first part of this theorem is a consequence of (5.11) combined with:

sup
t∈]0,tN ]

|EM∗(t)− EMsN (t)| ≤ 1− EMsN (tN ) ≤ 1− EM∗(tN ) + 2Φn(δ) ,

where we use the fact that 0 ≤ EM∗(tN ) − EMsN (tN ) ≤ 2Φn(δ) following from
Lemma 5.18.
To see the convergence of sN (x), note that:

sN (x) =
t1√
n

∞∑

k=1

1

(1 + 1√
n
)k
1x∈Ω̂tk

1{k≤N} ≤ t1√
n

∞∑

k=1

1

(1 + 1√
n
)k

< ∞,

and analogically to Remark 5.7 observe that EMsN ≤ EMs∞ so that supt∈]0,t1] |EM∗(t) −
EMs∞(t)| ≤ supt∈]0,t1] |EM∗(t)− EMsN (t)| which proves the last part of the theorem.

Proof of Lemma 5.17

By definition, for every class of set H, EM∗H(t) = maxΩ∈HHt(Ω). The bias EM∗(t) −
EM∗G(t) of the model G is majored by EM∗(t)− EM∗F (t) since F ⊂ G. Remember that

fF (x) :=
∑

i≥1
1x∈Fi

1

|Fi|

∫

Fi

f(y)dy,

and note that for all t > 0, {fF > t} ∈ F . It follows that:

EM∗(t)− EM∗F (t) =

∫

f>t
(f − t)− sup

C∈F

∫

C
(f − t)

≤
∫

f>t
(f − t)−

∫

fF>t
(f − t) since {fF > t} ∈ F

=

∫

f>t
(f − t)−

∫

fF>t
(fF − t) since ∀G ∈ F ,

∫

G
f =

∫

G
fF

=

∫

f>t
(f − t)−

∫

f>t
(fF − t) +

∫

f>t
(fF − t)−

∫

fF>t
(fF − t)

=

∫

f>t
(f − fF ) +

∫

{f>t}\{fF>t}
(fF − t)−

∫

{fF>t}\{f>t}
(fF − t) .

Observe that the second and the third term in the bound are non-positive. Therefore:

EM∗(t)− EM∗F (t) ≤
∫

f>t
(f − fF ) ≤

∫

Rd

|f − fF | .
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CHAPTER 6
Learning the dependence structure of rare events: a

non-asymptotic study

Abstract This chapter presents the details relative to the introducing section 1.4.1.
Assessing the probability of occurrence of extreme events is a crucial issue in various fields
like finance, insurance, telecommunication or environmental sciences. In a multivariate
framework, the tail dependence is characterized by the so-called stable tail dependence func-
tion (STDF). Learning this structure is the keystone of multivariate extremes. Although ex-
tensive studies have proved consistency and asymptotic normality for the empirical version
of the STDF, non-asymptotic bounds are still missing. The main purpose of this paper is to fill
this gap. Taking advantage of adapted VC-type concentration inequalities, upper bounds are
derived with expected rate of convergence in O(k−1/2). The concentration tools involved in
this analysis rely on a more general study of maximal deviations in low probability regions,
and thus directly apply to the classification of extreme data.
The material of this chapter is based on previous work published in Goix et al. (2015b).

6.1 Introduction

To introduce the stable tail dependence function, suppose we want to manage the risk of a
portfolio containing d different assets, X = (X1, . . . , Xd). We want to evaluate the probability
of events of the kind {X1 ≥ x1 or . . . or Xd ≥ xd}, for large multivariate thresholds x =
(x1, . . . , xd).

EVT shows that under not too strong condition on the regularity of the underlying tail distri-
bution, for large enough thresholds, (see Section 6.2 for details)

P{X1 ≥ x1 or . . . or Xd ≥ xd} ≃ l(p1, . . . , pd),

where l is the stable tail dependence function and the pj’s are the marginal exceedance prob-
abilities, pj = P(Xj ≥ xj). Thus, the functional l characterizes the dependence among
extremes. The joint distribution (over large thresholds) can thus be recovered from the knowl-
edge of the marginal distributions together with the STDF l. In practice, l can be learned
from ‘moderately extreme’ data, typically the k ‘largest’ ones among a sample of size n, with
k ≪ n. Recovering the pj’s can be easily done using univariate EVT modeling introduced in
Section 3.1. However, in the multivariate case, there is no finite-dimensional parametrization
of the dependence structure. The latter is characterized by the stable tail dependence func-
tion (STDF) l. Estimating this functional is thus one of the main issues in multivariate EVT.
Asymptotic properties of the empirical STDF have been widely studied, see Huang (1992),
Drees & Huang (1998), Embrechts et al. (2000) and De Haan & Ferreira (2007) for the bi-
variate case, and Qi (1997), Einmahl et al. (2012) for the general multivariate case under
smoothness assumptions.
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However, to the best of our knowledge, no bounds exist on the finite sample error. It is precisely
the purpose of this paper to derive such non-asymptotic bounds. Our results do not require any
assumption other than the existence of the STDF. The main idea is as follows. The empirical
estimator is based on the empirical measure of ‘extreme’ regions, which are hit only with low
probability. It is thus enough to bound maximal deviations on such low probability regions.
The key consists in choosing an adaptive VC class, which only covers the latter regions, and
on the other hand, to derive VC-type inequalities that incorporate p, the probability of hitting
the class at all.

The structure of this chapter is as follows. The whys and wherefores of EVT and the STDF are
explained in Section 6.2. In Section 6.3, concentration tools which rely on the general study of
maximal deviations in low probability regions are introduced, with an immediate application to
the framework of classification. The main result of this contribution, a non-asymptotic bound
on the convergence of the empirical STDF, is derived in Section 6.4. Section 6.5 concludes.

6.2 Background on the stable tail dependence function

In the multivariate case, it is mathematically very convenient to decompose the joint distribu-
tion of X = (X1, . . . , Xd) into the margins on the one hand, and the dependence structure on
the other hand. In particular, handling uniform margins is very helpful when it comes to es-
tablishing upper bounds on the deviations between empirical and mean measures. Define thus
standardized variables U j = 1 − Fj(X

j), where Fj is the marginal distribution function of
Xj , and U = (U1, . . . , Ud). Knowledge of the Fj’s and of the joint distribution of U allows
to recover that of X, since P(X1 ≤ x1, . . . , Xd ≤ xd) = P(U1 ≥ 1 − F1(x1), . . . , U

d ≥
1−Fd(xd)). With these notations, under the fairly general assumption, namely, standard mul-
tivariate regular variation of standardized variables (3.5), equivalent to (3.11), there exists a
limit measure Λ on [0,∞]d \ {∞} (called the exponent measure) such that

lim
t→0

t−1P
[
U1 ≤ t x1 or . . . or Ud ≤ t xd

]
= Λ[x,∞]c := l(x) . (xj ∈ [0,∞],x 6= ∞)

(6.1)

Notice that no assumption is made about the marginal distributions, so that our framework
allows non-standard regular variation, or even no regular variation at all of the original data
X (for more details see e.g. Resnick (2007), th. 6.5 or Resnick (1987), prop. 5.10.). The
functional l in the limit in (6.1) is called the stable tail dependence function. In the remainder
of this chapter, the only assumption is the existence of a limit in (6.1), i.e., the existence of the
STDF – or equivalently conditions (3.5) or (3.11) in the background section 3.2 on multivariate
EVT.

We emphasize that the knowledge of both l and the margins gives access to the probability of
hitting ‘extreme’ regions of the kind [0,x]c, for ‘large’ thresholds x = (x1, . . . , xd) (i.e. such
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that for some j ≤ d, 1− Fj(xj) is a O(t) for some small t). Indeed, in such a case,

P(X1 > x1 or . . . or Xd > xd) = P




d⋃

j=1

(1− Fj)(X
j) ≤ (1− Fj)(xj)




= t




1

t
P




d⋃

j=1

U j ≤ t

[
(1− Fj)(xj)

t

]





∼
t→0

t l
(
t−1 (1− F1)(x1), . . . , t

−1 (1− Fd)(xd)
)

= l
(
(1− F1)(x1), . . . , (1− Fd)(xd)

)

where the last equality follows from the homogeneity of l. This underlines the utmost impor-
tance of estimating the STDF and by extension stating non-asymptotic bounds on this conver-
gence.

Any stable tail dependence function l(.) is in fact a norm, (see Falk et al. (1994), p179) and
satisfies

max{x1, . . . , xn} ≤ l(x) ≤ x1 + . . .+ xd,

where the lower bound is attained if X is perfectly tail dependent (extremes of univariate
marginals always occur simultaneously), and the upper bound in case of tail independence or
asymptotic independence (extremes of univariate marginals never occur simultaneously). We
refer to Falk et al. (1994) for more details and properties on the STDF.

6.3 A VC-type inequality adapted to the study of low probability
regions

Classical VC inequalities aim at bounding the deviation of empirical from theoretical quanti-
ties on relatively simple classes of sets, called VC classes. These classes typically cover the
support of the underlying distribution. However, when dealing with rare events, it is of great
interest to have such bounds on a class of sets which only covers a small probability region
and thus contains (very) few observations. This yields sharper bounds, since only differences
between very small quantities are involved. The starting point of this analysis is the following
VC-inequality stated below.

Theorem 6.1. Let X1, . . . ,Xn i .i .d . realizations of a r.v. X and a VC-class A with VC-
dimension VA.Consider the class union A = ∪A∈AA, and let p = P(X ∈ A). Then there is
an absolute constant C such that for all 0 < δ < 1, with probability at least 1− δ,

sup
A∈A

∣∣∣∣∣P
[
X ∈ A

]
− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ C

[√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

]
. (6.2)

Proof. See Chapter 2, Corollary 2.20.

Remark 6.2. (COMPARISON WITH EXISTING BOUNDS) The following re-normalized VC-
inequality is due to Vapnik and Chervonenkis (see Vapnik & Chervonenkis (1974), Anthony
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& Shawe-Taylor (1993) or Bousquet et al. (2004), Thm 7),

sup
A∈A

∣∣∣∣∣
P(X ∈ A)− 1

n

∑n
i=1 1Xi∈A√

P(X ∈ A)

∣∣∣∣∣ ≤ 2

√
logSA(2n) + log 4

δ

n
. (6.3)

SA(n) is the shattering coefficient (or growth function) associated with class A. (6.3) holds
under the same conditions as Theorem 6.1, and allows to derive a bound similar to (6.2), but
with an additional log n factor. Indeed, it is known as Sauer’s Lemma (see Bousquet et al.
(2004)-lemma 1 for instance) that for n ≥ VA, SA(n) ≤ ( en

VA
)VA . It is then easy to see from

(6.3) that:

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ 2
√

sup
A∈A

P(X ∈ A)

√
VA log 2en

VA
+ log 4

δ

n
.

Introduce the union A of all sets in the considered VC class, A = ∪A∈AA, and let p =
P (X ∈ A). Then, the previous bound immediately yields

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ 2
√
p

√
VA log 2en

VA
+ log 4

δ

n
.

Remark 6.3. (SIMPLER BOUND) If we assume furthermore that δ ≥ e−np, then we have:

sup
A∈A

∣∣∣∣∣P(X ∈ A)− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ C
√
p

√
VA
n

log
1

δ
.

Remark 6.4. (INTERPRETATION) Inequality (6.2) can be seen as an interpolation between the
best case (small p) where the rate of convergence is O(1/n), and the worst case (large p) where
the rate is O(1/

√
n). An alternative interpretation is as follows: divide both sides of (6.2) by p,

so that the left hand side becomes a supremum of conditional probabilities upon belonging to
the union class A, {P(X ∈ A

∣∣X ∈ A)}A∈A. Then the upper bound is proportional to ǫ(np, δ)

where ǫ(n, δ) :=
√

VA
n log 1

δ + 1
n log 1

δ is a classical VC-bound; np is in fact the expected
number of observations involved in (6.2), and can thus be viewed as the effective sample size.

Classification of Extremes A key issue in the prediction framework is to find upper
bounds for the maximal deviation supg∈G |Ln(g) − L(g)|, where L(g) = P(g(X) 6= Y )

is the risk of the classifier g : X → {−1, 1}, associated with the r.v. (X, Y ) ∈ Rd ×
{−1, 1}. Ln(g) = 1

n

∑n
i=1 I{g(Xi) 6= Yi} is the empirical risk based on a training dataset

{(X1, Y1), . . . , (Xn, Yn)}. Strong upper bounds on supg∈G |Ln(g)− L(g)| ensure the accu-
racy of the empirical risk minimizer gn := argming∈G Ln(g).

In a wide variety of applications (e.g. Finance, Insurance, Networks), it is of crucial im-
portance to predict the system response Y when the input variable X takes extreme values,
corresponding to shocks on the underlying mechanism. In such a case, the risk of a prediction
rule g(X) should be defined by integrating the loss function L(g) with respect to the condi-
tional joint distribution of the pair (X, Y ) given X is extreme. For instance, consider the event
{‖X‖ ≥ tα} where tα is the (1 − α)th quantile of ‖X‖ for a small α. To investigate the
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accuracy of a classifier g given {‖X‖ ≥ tα}, introduce

Lα(g) : =
1

α
P (Y 6= g(X), ‖X‖ > tα) = P

(
Y 6= g(X)

∣∣ ‖X‖ ≥ tα
)
,

and its empirical counterpart

Lα,n(g) : =
1

nα

n∑

i=1

I{Yi 6=g(Xi), ‖Xi‖>‖X(⌊nα⌋)‖} ,

where ‖X(1)‖ ≥ . . . ≥ ‖X(n)‖ are the order statistics of ‖X‖. Then as an application of
Theorem 6.1 with A = {(x, y), g(x) 6= y, ‖x‖ > tα}, g ∈ G, we have :

sup
g∈G

∣∣∣∣Lα,n(g)− Lα(g)

∣∣∣∣ ≤ C

[√
VG
nα

log
1

δ
+

1

nα
log

1

δ

]
. (6.4)

We refer to the remark 6.5 below for details. Again the obtained rate by empirical risk mini-
mization meets our expectations (see remark 6.4), insofar as α is the fraction of the dataset in-
volved in the empirical risk Lα,n. We point out that α may typically depend on n, α = αn → 0.
In this context a direct use of the standard version of the VC inequality would lead to a rate of
order 1/(αn

√
n), which may not vanish as n → +∞ and even go to infinity if αn decays to 0

faster than 1/
√
n .

Let us point out that rare events may be chosen more general than {‖X‖ > tα}, say
{X ∈ Q} with unknown probability q = P({X ∈ Q}). The previous result still applies
with L̃Q(g) := P (Y 6= g(X),X ∈ Q) and L̃Q,n(g) := Pn (Y 6= g(X),X ∈ Q); then the

obtained upper bound on supg∈G
1
q

∣∣∣L̃Q(g)− L̃Q,n(g)
∣∣∣ is of order O(1/

√
qn).

Similar results can be established for the problem of distribution-free regression, when the
error of any predictive rule f(x) is measured by the conditional mean squared error E[(Z −
f(X))2 | Z > qαn ], denoting by Z the real-valued output variable to be predicted from X and
by qα its quantile at level 1− α.

Remark 6.5. To obtain the bound in (6.4), the following easy to show inequality is needed
before applying Theorem 6.1 :

sup
g∈G

|Lα,n(g)− Lα(g)| ≤ 1

α

[
sup
g∈G

∣∣∣∣∣P (Y 6= g(X), ‖X‖ > tα)−
1

n

n∑

i=1

I{Yi 6=g(Xi), ‖Xi‖>tα}

∣∣∣∣∣

+

∣∣∣∣∣P (‖X‖ > tα)−
1

n

n∑

i=1

I{‖Xi‖>tα}

∣∣∣∣∣ +
1

n

]
.

Note that the final objective would be to bound the quantity |Lα(gn) − Lα(g
∗
α)|, where g∗α is

a Bayes classifier for the problem at stake, i.e. a solution of the conditional risk minimization
problem inf{g meas.} Lα(g), and gn a solution of infg∈G Ln,α(g). Such a bound involves the
maximal deviation in (6.4) as well as a bias term infg∈G Lα(g) − Lα(g

∗
α), as in the classical

setting. Further, it can be shown that the standard Bayes classifier g∗(x) := 2I{η(x) >
1/2} − 1 (where η(x) = P(Y = 1 | X = x)) is also a solution of the conditional risk
minimization problem. Finally, the conditional bias infg∈G Lα(g)− Lα(g

∗
α) can be expressed

as
1

α
inf
g∈G

E
[
|2η(X)− 1|1g(X) 6=g∗(X)1‖X‖≥tα

]
,
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to be compared with the standard bias

inf
g∈G

E
[
|2η(X)− 1|1g(X) 6=g∗(X)

]
.

6.4 A bound on the STDF

Let us place ourselves in the multivariate extreme framework introduced in Section 6.1: Con-
sider a random variable X = (X1, . . . Xd) in Rd with distribution function F and marginal
distribution functions F1, . . . , Fd. Let X1,X2, . . . ,Xn be an i .i .d . sample distributed as X.
In the subsequent analysis, the only assumption is the existence of the STDF defined in (6.1)
and the margins Fj are supposed to be unknown. The definition of l may be recast as

l(x) := lim
t→0

t−1F̃ (tx) (6.5)

with F̃ (x) = (1−F )
(
(1−F1)

←(x1), . . . , (1−Fd)
←(xd)

)
. Here the notation (1−Fj)

←(xj)
denotes the quantity sup{y : 1−Fj(y) ≥ xj}. Notice that, in terms of standardized variables

U j , F̃ (x) = P
(⋃d

j=1{U j ≤ xj}
)
= P(U ∈ [x,∞[c).

Let k = k(n) be a sequence of positive integers such that k → ∞ and k = o(n) as n → ∞. A
natural estimator of l is its empirical version defined as follows, see Huang (1992), Qi (1997),
Drees & Huang (1998), Einmahl et al. (2006):

ln(x) =
1

k

n∑

i=1

1{X1
i ≥X1

(n−⌊kx1⌋+1)
or ... or Xd

i ≥Xd
(n−⌊kxd⌋+1)

} , (6.6)

The expression is indeed suggested by the definition of l in (6.5), with all distribution functions
and univariate quantiles replaced by their empirical counterparts, and with t replaced by k/n.
Extensive studies have proved consistency and asymptotic normality of this non-parametric
estimator of l, see Huang (1992), Drees & Huang (1998) and De Haan & Ferreira (2007) for
the asymptotic normality in dimension 2, Qi (1997) for consistency in arbitrary dimension, and
Einmahl et al. (2012) for asymptotic normality in arbitrary dimension under differentiability
conditions on l.

To our best knowledge, there is no established non-asymptotic bound on the maximal deviation
sup0≤x≤T |ln(x)− l(x)|. It is the purpose of the remainder of this section to derive such a
bound, without any smoothness condition on l.

First, Theorem 6.1 needs adaptation to a particular setting: introduce a random vector Z =
(Z1, . . . , Zd) with uniform margins, i.e., for every j = 1, . . . , d, the variable Zj is uniform on
[0, 1]. Consider the class

A =

{[k
n
x,∞

[ c
: x ∈ Rd

+, 0 ≤ xj ≤ T (1 ≤ j ≤ d)

}

This is a VC-class of VC-dimension d, as proved in Devroye et al. (1996), Theorem 13.8,
for its complementary class

{
[x,∞[, x > 0

}
. In this context, the union class A has mass

p ≤ dT k
n since

P(Z ∈ A) = P

[
Z ∈

([k
n
T,∞

[d)c]
= P


 ⋃

j=1..d

Zj <
k

n
T


 ≤

d∑

j=1

P

[
Zj <

k

n
T

]
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Consider the measures Cn( · ) = 1
n

∑n
i=1 1{Zi∈ · } and C(x) = P(Z ∈ · ). As a direct conse-

quence of Theorem 6.1 the following inequality holds true with probability at least 1− δ,

sup
0≤x≤T

n

k

∣∣∣∣Cn(
k

n
[x,∞[c)− C(

k

n
[x,∞[c)

∣∣∣∣ ≤ Cd

(√
T

k
log

1

δ
+

1

k
log

1

δ

)
.

If we assume furthermore that δ ≥ e−k, then we have

sup
0≤x≤T

n

k

∣∣∣∣Cn(
k

n
[x,∞[c)− C(

k

n
[x,∞[c)

∣∣∣∣ ≤ Cd

√
T

k
log

1

δ
. (6.7)

Inequality (6.7) is the cornerstone of the following theorem, which is the main result of this
contribution. In the sequel, we consider a sequence k(n) of integers such that k = o(n) and
k(n) → ∞. To keep the notation uncluttered, we often drop the dependence in n and simply
write k instead of k(n).

Theorem 6.6. Let T be a positive number such that T ≥ 7
2(

log d
k +1), and δ such that δ ≥ e−k.

Then there is an absolute constant C such that for each n > 0, with probability at least 1− δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Cd

√
T

k
log

d+ 3

δ
+ sup

0≤x≤2T

∣∣∣∣
n

k
F̃ (

k

n
x)− l(x)

∣∣∣∣ (6.8)

The second term on the right hand side of (6.8) is a bias term which depends on the discrepancy
between the left hand side and the limit in (6.1) or (6.5) at level t = k/n. The value k can
be interpreted as the effective number of observations used in the empirical estimate, i.e. the
effective sample size for tail estimation. Considering classical inequalities in empirical process
theory such as VC-bounds, it is thus no surprise to obtain one in O(1/

√
k). Too large values

of k tend to yield a large bias, whereas too small values of k yield a large variance. For a more
detailed discussion on the choice of k we recommend Einmahl et al. (2009).

The proof of Theorem 6.6 follows the same lines as in Qi (1997). For one-dimensional random
variables Y1, . . . , Yn, let us denote by Y(1) ≤ . . . ≤ Y(n) their order statistics. Define then the

empirical version F̃n of F̃ ( introduced in (6.5)) as

F̃n(x) =
1

n

n∑

i=1

1{U1
i ≤x1 or ... or Ud

i ≤xd} ,

so that n
k F̃n(

k
nx) = 1

k

∑n
i=1 1{U1

i ≤ k
n
x1 or ... or Ud

i ≤ k
n
xd} . Notice that the U j

i ’s are not observ-

able (since Fj is unknown). In fact, F̃n will be used as a substitute for ln allowing to handle
uniform variables. The following lemmas make this point explicit.

Lemma 6.7 (Link between ln and F̃n). The empirical version of F̃ and that of l are related
via

ln(x) =
n

k
F̃n(U

1
(⌊kx1⌋), . . . , Ud

(⌊kxd⌋)).
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Proof. Consider the definition of ln in (6.6), and note that for j = 1, . . . , d,

Xj
i ≥ Xj

(n−⌊kxi⌋+1) ⇔ rank(Xj
i ) ≥ n− ⌊kxj⌋+ 1

⇔ rank(Fj(X
j
i )) ≥ n− ⌊kxj⌋+ 1

⇔ rank(1− Fj(X
j
i )) ≤ ⌊kxj⌋

⇔ U j
i ≤ U j

(⌊kxj⌋),

so that ln(x) = 1
k

∑n
j=1 1{U1

j≤U1
(⌊kx1⌋)

or ... or Ud
j ≤Ud

(⌊kxd⌋)
}.

Lemma 6.8 (Uniform bound on F̃n’s deviations). For any finite T > 0, and δ ≥ e−k, with
probability at least 1− δ, the deviation of F̃n from F̃ is uniformly bounded:

sup
0≤x≤T

∣∣∣∣
n

k
F̃n(

k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣ ≤ Cd

√
T

k
log

1

δ

Proof. Notice that

sup
0≤x≤T

∣∣∣∣
n

k
F̃n(

k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣ =
n

k

∣∣∣∣∣
1

n

n∑

i=1

1{Ui∈ k
n
]x,∞]c} − P

[
U ∈ k

n
]x,∞]c

]∣∣∣∣∣ ,

and apply inequality (6.7).

Lemma 6.9 (Bound on the order statistics of U). Let δ ≥ e−k. For any finite positive number
T > 0 such that T ≥ 7/2((log d)/k + 1), we have with probability greater than 1− δ,

∀ 1 ≤ j ≤ d,
n

k
U j
(⌊kT ⌋) ≤ 2T , (6.9)

and with probability greater than 1− (d+ 1)δ,

max
1≤j≤d

sup
0≤xj≤T

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣ ≤ C

√
T

k
log

1

δ
.

Proof. Notice that sup[0,T ]
n
kU

j
(⌊k · ⌋) = n

kU
j
(⌊kT ⌋) and let Γn(t) = 1

n

∑n
i=1 1{Uj

i ≤t}
. It then

straightforward to see that

n

k
U j
(⌊kT ⌋) ≤ 2T ⇔ Γn

(k
n
2T
)
≥ ⌊kT ⌋

n

so that

P
(n
k
U j
(⌊kT ⌋) > 2T

)
≤ P


 sup

2kT
n
≤t≤1

t

Γn(t)
> 2


 .

Using Wellner (1978), Lemma 1-(ii) (we use the fact that, with the notations of this reference,
h(1/2) ≥ 1/7 ), we obtain

P
(n
k
U j
(⌊kT ⌋) > 2T

)
≤ e−

2kT
7 ,
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and thus
P
(
∃j, n

k
U j
(⌊kT ⌋) > 2T

)
≤ de−

2kT
7 ≤ e−k ≤ δ

as required in (6.9). Yet,

sup
0≤xj≤T

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣ = sup
0≤xj≤T

∣∣∣∣∣
1

k

n∑

i=1

1{Uj
i ≤U

j
(⌊kxj⌋)

} −
n

k
U j
(⌊kxj⌋)

∣∣∣∣∣

=
n

k
sup

0≤xj≤T

∣∣∣∣∣
1

n

n∑

i=1

1{Uj
i ≤U

j
(⌊kxj⌋)

} − P
[
U j
1 ≤ U j

(⌊kxj⌋)

]∣∣∣∣∣

= sup
0≤xj≤T

Θj(
n

k
U j
(⌊kxj⌋)),

where Θj(y) = n
k

∣∣∣ 1n
∑n

i=1 1{Uj
i ≤ k

n
y} − P

[
U j
1 ≤ k

ny
]∣∣∣. Then, by (6.9), with probability

greater than 1− δ,

max
1≤j≤d

sup
0≤xj≤T

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣ ≤ max
1≤j≤d

sup
0≤y≤2T

Θj(y)

and from (6.7), each term sup0≤y≤2T Θj(y) is bounded by C
√

T
k log 1

δ (with probability 1−δ).

In the end, with probability greater than 1− (d+ 1)δ :

max
1≤j≤d

sup
0≤y≤2T

Θj(y) ≤ C

√
T

k
log

1

δ
,

which is the desired inequality

We may now proceed with the proof of Theorem 6.6. First of all, noticing that F̃ (tx) is non-
decreasing in xj for every l and that l(x) is non-decreasing and continuous (thus uniformly
continuous on [0, T ]d), from (6.5) it is easy to prove by sub-dividing [0, T ]d (see Qi (1997)
p.174 for details) that

sup
0≤x≤T

∣∣∣∣
1

t
F̃ (tx)− l(x)

∣∣∣∣→ 0 as t → 0 . (6.10)

Using Lemma 6.7, we can write :

sup
0≤x≤T

|ln(x)− l(x)| = sup
0≤x≤T

∣∣∣n
k
F̃n

(
U1
(⌊kx1⌋), . . . , U

d
(⌊kxd⌋)

)
− l(x)

∣∣∣

≤ sup
0≤x≤T

∣∣∣n
k
F̃n

(
U1
(⌊kx1⌋), . . . , U

d
(⌊kxd⌋)

)
− n

k
F̃
(
U1
(⌊kx1⌋), . . . , U

d
(⌊kxd⌋)

)∣∣∣

+ sup
0≤x≤T

∣∣∣n
k
F̃
(
U1
(⌊kx1⌋), . . . , U

d
(⌊kxd⌋)

)
− l
(n
k
U1
(⌊kx1⌋), . . . ,

n

k
Ud
(⌊kxd⌋)

)∣∣∣

+ sup
0≤x≤T

∣∣∣l
(n
k
U1
(⌊kx1⌋), . . . ,

n

k
Ud
(⌊kxd⌋)

)
− l(x)

∣∣∣

=: Λ(n) + Ξ(n) + Υ(n) .

Now, by (6.9) we have with probability greater than 1− δ :

Λ(n) ≤ sup
0≤x≤2T

∣∣∣∣
n

k
F̃n(

k

n
x)− n

k
F̃ (

k

n
x)

∣∣∣∣
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and by Lemma 6.8,

Λ(n) ≤ Cd

√
2T

k
log

1

δ

with probability at least 1− 2δ. Similarly,

Ξ(n) ≤ sup
0≤x≤2T

∣∣∣∣
n

k
F̃ (

k

n
x)− n

k
l(
k

n
x)

∣∣∣∣ = sup
0≤x≤2T

∣∣∣∣
n

k
F̃ (

k

n
x)− l(x)

∣∣∣∣ → 0 (bias term)

by virtue of (6.10). Concerning Υ(n), we have :

Υ(n) ≤ sup
0≤x≤T

∣∣∣∣l
(n
k
U1
(⌊kx1⌋), . . . ,

n

k
Ud
(⌊kxd⌋)

)
− l(

⌊kx1⌋
k

, . . . ,
⌊kxd⌋
k

)

∣∣∣∣

+ sup
0≤x≤T

∣∣∣∣l(
⌊kx1⌋
k

, . . . ,
⌊kxd⌋
k

)− l(x)

∣∣∣∣

= Υ1(n) + Υ2(n)

Recall that l is 1-Lipschitz on [0, T ]d regarding to the ‖.‖1-norm, so that

Υ1(n) ≤ sup
0≤x≤T

d∑

l=1

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣

so that by Lemma 6.9, with probability greater than 1− (d+ 1)δ:

Υ1(n) ≤ Cd

√
2T

k
log

1

δ
.

On the other hand, Υ2(n) ≤ sup0≤x≤T
∑d

l=1

∣∣∣ ⌊kxj⌋
k − xj

∣∣∣ ≤ d
k . Finally we get, for every

n > 0, with probability at least 1− (d+ 3)δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Λ(n) + Υ1(n) + Υ2(n) + Ξ(n)

≤ Cd

√
2T

k
log

1

δ
+ Cd

√
2T

k
log

1

δ
+

d

k
+ sup

0≤x≤2T

∣∣∣∣F̃ (x)− n

k
l(
k

n
x)

∣∣∣∣

≤ C ′d

√
2T

k
log

1

δ
+ sup

0≤x≤2T

∣∣∣∣
n

k
F̃ (

k

n
x)− l(x)

∣∣∣∣

6.5 Discussion

We provide a non-asymptotic bound of VC type controlling the error of the empirical version
of the STDF. Our bound achieves the expected rate in O(k−1/2) + bias(k), where k is the
number of (extreme) observations retained in the learning process. In practice the smaller
k/n, the smaller the bias. Since no assumption is made on the underlying distribution, other
than the existence of the STDF, it is not possible in our framework to control the bias explicitly.
One option would be to make an additional hypothesis of ‘second order regular variation’ (see
e.g. de Haan & Resnick, 1996). We made the choice of making as few assumptions as possible,
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however, since the bias term is separated from the ‘variance’ term, it is probably feasible to
refine our result with more assumptions.

For the purpose of controlling the empirical STDF, we have adopted the more general frame-
work of maximal deviations in low probability regions. The VC-type bounds adapted to low
probability regions derived in Section 6.3 may directly be applied to a particular prediction
context, namely where the objective is to learn a classifier (or a regressor) that has good prop-
erties on low probability regions. This may open the road to the study of classification of
extremal observations, with immediate applications to the field of anomaly detection.





CHAPTER 7
Sparse Representation of Multivariate Extremes

Abstract This chapter presents the details relative to the introducing Section 1.4.2.
Capturing the dependence structure of multivariate extreme events is a major concern in many
fields involving the management of risks stemming from multiple sources, e.g. portfolio mon-
itoring, insurance, environmental risk management and anomaly detection. One convenient
(non-parametric) characterization of extreme dependence in the framework of multivariate
Extreme Value Theory (EVT) is the angular measure, which provides direct information
about the probable ’directions’ of extremes, that is, the relative contribution of each feature/-
coordinate of the ‘largest’ observations. Modeling the angular measure in high dimensional
problems is a major challenge for the multivariate analysis of rare events. The present chapter
proposes a novel methodology aiming at exhibiting a sparsity pattern within the dependence
structure of extremes. This is achieved by estimating the amount of mass spread by the angu-
lar measure on representative sets of directions, corresponding to specific sub-cones of Rd

+.
This dimension reduction technique paves the way towards scaling up existing multivariate
EVT methods. Beyond a non-asymptotic study providing a theoretical validity framework for
our method, we propose as a direct application a –first– Anomaly Detection algorithm based
on multivariate EVT. This algorithm builds a sparse ‘normal profile’ of extreme behaviors, to
be confronted with new (possibly abnormal) extreme observations. Illustrative experimental
results provide strong empirical evidence of the relevance of our approach.

Note: The material of this chapter is based on previous work under review available in Goix
et al. (2016b). Part of this work have been published in Goix et al. (2016c) and Goix et al.
(2015a).

7.1 Introduction

7.1.1 Context: multivariate extreme values in large dimension

Extreme Value Theory (EVT in abbreviated form) provides a theoretical basis for modeling
the tails of probability distributions. In many applied fields where rare events may have a dis-
astrous impact, such as finance, insurance, climate, environmental risk management, network
monitoring (Finkenstadt & Rootzén (2003); Smith (2003)) or anomaly detection (Clifton et al.
(2011); Lee & Roberts (2008)), the information carried by extremes is crucial. In a multivari-
ate context, the dependence structure of the joint tail is of particular interest, as it gives access
e.g. to probabilities of a joint excess above high thresholds or to multivariate quantile regions.
Also, the distributional structure of extremes indicates which components of a multivariate
quantity may be simultaneously large while the others stay small, which is a valuable piece
of information for multi-factor risk assessment or detection of anomalies among other –not
abnormal– extreme data.
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In a multivariate ‘Peak-Over-Threshold’ setting, realizations of a d -dimensional random vec-
tor Y = (Y1, ..., Yd) are observed and the goal pursued is to learn the conditional distri-
bution of excesses, [ Y | ‖Y‖ ≥ r ], above some large threshold r > 0. The dependence
structure of such excesses is described via the distribution of the ‘directions’ formed by the
most extreme observations, the so-called angular measure, hereafter denoted by Φ. The
latter is defined on the positive orthant of the d − 1 dimensional hyper-sphere. To wit,
for any region A on the unit sphere (a set of ‘directions’), after suitable standardization of
the data (see Section 7.2), CΦ(A) ≃ P(‖Y‖−1Y ∈ A | ‖Y‖ > r), where C is a nor-
malizing constant. Some probability mass may be spread on any sub-sphere of dimension
k < d, the k-faces of an hyper-cube if we use the infinity norm, which complexifies in-
ference when d is large. To fix ideas, the presence of Φ-mass on a sub-sphere of the type
{max1≤i≤k xi = 1 ; xi > 0 (i ≤ k) ; xk+1 = . . . = xd = 0} indicates that the components
Y1, . . . , Yk may simultaneously be large, while the others are small. An extensive exposition
of this multivariate extreme setting may be found e.g. in Resnick (1987), Beirlant et al. (2006).

Parametric or semi-parametric modeling and estimation of the structure of multivariate ex-
tremes is relatively well documented in the statistical literature, see e.g. Coles & Tawn (1991);
Fougères et al. (2009); Cooley et al. (2010); Sabourin & Naveau (2014) and the references
therein. In a non-parametric setting, there is also an abundant literature concerning consistency
and asymptotic normality of estimators of functionals characterizing the extreme dependence
structure, e.g. extreme value copulas or the stable tail dependence function (STDF), see Segers
(2012a); Drees & Huang (1998); Embrechts et al. (2000); Einmahl et al. (2012); De Haan &
Ferreira (2007).

In many applications, it is nevertheless more convenient to work with the angular measure
itself, as the latter gives more direct information on the dependence structure and is able to re-
flect structural simplifying properties (e.g. sparsity as detailed below) which would not appear
in copulas or in the STDF. However, non-parametric modeling of the angular measure faces
major difficulties, stemming from the potentially complex structure of the latter, especially in a
high dimensional setting. Further, from a theoretical point of view, non-parametric estimation
of the angular measure has only been studied in the two dimensional case, in Einmahl et al.
(2001) and Einmahl & Segers (2009), in an asymptotic framework.

Scaling up multivariate EVT is a major challenge that one faces when confronted to high-
dimensional learning tasks, since most multivariate extreme value models have been designed
to handle moderate dimensional problems (say, of dimensionality d ≤ 10). For larger dimen-
sions, simplifying modeling choices are needed, stipulating e.g that only some pre-definite
subgroups of components may be concomitantly extremes, or, on the contrary, that all of them
must be (see e.g. Stephenson (2009) or Sabourin & Naveau (2014)). This curse of dimension-
ality can be explained, in the context of extreme values analysis, by the relative scarcity of
extreme data, the computational complexity of the estimation procedure and, in the paramet-
ric case, by the fact that the dimension of the parameter space usually grows with that of the
sample space. This calls for dimensionality reduction devices adapted to multivariate extreme
values.

In a wide range of situations, one may expect the occurrence of two phenomena:

1- Only a ‘small’ number of groups of components may be concomitantly extreme, so that only
a ‘small’ number of hyper-cubes (those corresponding to these subsets of indexes precisely)
have non zero mass (‘small’ is relative to the total number of groups 2d).
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2- Each of these groups contains a limited number of coordinates (compared to the original
dimensionality), so that the corresponding hyper-cubes with non zero mass have small dimen-
sion compared to d.

The main purpose of this chapter is to introduce a data-driven methodology for identifying
such faces, so as to reduce the dimensionality of the problem and thus to learn a sparse rep-
resentation of extreme behaviors. In case hypothesis 2- is not fulfilled, such a sparse ‘profile’
can still be learned, but looses the low dimensional property of its supporting hyper-cubes.

One major issue is that real data generally do not concentrate on sub-spaces of zero Lebesgue
measure. This is circumvented by setting to zero any coordinate less than a threshold ǫ > 0,
so that the corresponding ‘angle’ is assigned to a lower-dimensional face.

The theoretical results stated in this chapter build on the work of Goix et al. (2015b) exposed
in Chapter 6, where non-asymptotic bounds related to the statistical performance of a non-
parametric estimator of the STDF, another functional measure of the dependence structure of
extremes, are established. However, even in the case of a sparse angular measure, the support
of the STDF would not be so, since the latter functional is an integrated version of the former
(see (7.6), Section 7.2). Also, in many applications, it is more convenient to work with the
angular measure. Indeed, it provides direct information about the probable ‘directions’ of
extremes, that is, the relative contribution of each components of the ‘largest’ observations
(where ‘large’ may be understood e.g. in the sense of the infinity norm on the input space).
We emphasize again that estimating these ‘probable relative contributions’ is a major concern
in many fields involving the management of risks from multiple sources. To the best of our
knowledge, non-parametric estimation of the angular measure has only been treated in the two
dimensional case, in Einmahl et al. (2001) and Einmahl & Segers (2009), in an asymptotic
framework.

Main contributions. The present contribution extends the non-asymptotic study derived in
Chapter 6 to the angular measure of extremes, restricted to a well-chosen representative class
of sets, corresponding to lower-dimensional regions of the space. The objective is to learn a
representation of the angular measure, rough enough to control the variance in high dimension
and accurate enough to gain information about the ’probable directions’ of extremes. This
yields a –first– non-parametric estimate of the angular measure in any dimension, restricted
to a class of sub-cones, with a non asymptotic bound on the error. The representation thus
obtained is exploited to detect anomalies among extremes.

The proposed algorithm is based on dimensionality reduction. We believe that our method can
also be used as a preprocessing stage, for dimensionality reduction purpose, before proceed-
ing with a parametric or semi-parametric estimation which could benefit from the structural
information issued in the first step. Such applications are beyond the scope of this work and
will be the subject of further research.

7.1.2 Application to Anomaly Detection

The framework we develop in this chapter is non-parametric and lies at the intersection of sup-
port estimation, density estimation and dimensionality reduction: it consists in learning from
training data the support of a distribution, that can be decomposed into sub-cones, hopefully
of low dimension each and to which some mass is assigned, according to empirical versions
of probability measures on extreme regions.

EVT has been intensively used in anomaly detection in the one-dimensional situation, see for
instance Roberts (1999), Roberts (2000), Clifton et al. (2011), Clifton et al. (2008), Lee &
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Roberts (2008). In the multivariate setup, however, there is –to the best of our knowledge–
no anomaly detection method relying on multivariate EVT. Until now, the multidimensional
case has only been tackled by means of extreme value statistics based on univariate EVT. The
major reason is the difficulty to scale up existing multivariate EVT models with the dimension-
ality. In the present contribution we bridge the gap between the practice of anomaly detection
and multivariate EVT by proposing a method which is able to learn a sparse ‘normal profile’
of multivariate extremes and, as such, may be implemented to improve the accuracy of any
usual anomaly detection algorithm. Experimental results show that this method significantly
improves the performance in extreme regions, as the risk is taken not to uniformly predict
as abnormal the most extremal observations, but to learn their dependence structure. These
improvements may typically be useful in applications where the cost of false positive errors
(i.e. false alarms) is very high (e.g. predictive maintenance in aeronautics).

The structure of this chapter is as follows. The whys and wherefores of multivariate EVT are
explained in the following Section 7.2. A non-parametric estimator of the subfaces’ mass is
introduced in Section 7.3, the accuracy of which is investigated by establishing finite sample
error bounds relying on VC inequalities tailored to low probability regions. An application to
anomaly detection is proposed in Section 7.4, followed by a novel anomaly detection algorithm
which relies on the above mentioned non-parametric estimator. Experiments on both simulated
and real data are performed in Section 7.5. Technical details are deferred at the end of this
chapter, Section 7.7.

7.2 Multivariate EVT Framework and Problem Statement

Extreme Value Theory (EVT) develops models to provide a reasonable assessment of the
probability of occurrence of rare events. Such models are widely used in fields involving risk
management such as Finance, Insurance, Operation Research, Telecommunication or Environ-
mental Sciences for instance. For clarity, we start off with recalling some key notions devel-
oped in Chapter 3 pertaining to (multivariate) EVT, that shall be involved in the formulation
of the problem next stated and in its subsequent analysis.

First recall the primal assumption of multivariate extreme value theory. For a d-dimensional
r.v. X = (X1, . . . , Xd) with distribution F(x) := P(X1 ≤ x1, . . . , Xd ≤ xd), namely
F ∈ DA(G) it stipulates the existence of two sequences {an, n ≥ 1} and {bn, n ≥ 1} in Rd,
the an’s being positive, and a non-degenerate distribution function G such that

lim
n→∞

n P

(
X1 − b1n

a1n
≥ x1 or . . . or

Xd − bdn
adn

≥ xd

)
= − logG(x) (7.1)

for all continuity points x ∈ Rd of G. Recall also that considering the standardized variables
V j = 1/(1− Fj(X

j)) and V = (V 1, . . . , V d), Assumption (7.1) implies the existence of a
limit measure µ on [0,∞]d \ {0} such that

n P

(
V 1

n
≥ v1 or · · · or

V d

n
≥ vd

)
−−−→
n→∞

µ ([0,v]c) , (7.2)

where [0,v] := [0, v1] × · · · × [0, vd]. The dependence structure of the limit G in (7.1) can
then be expressed by means of the so-termed exponent measure µ:

− logG(x) = µ

([
0,

( −1

logG1(x1)
, . . . ,

−1

logGd(xd)

)]c)
.
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The measure µ should be viewed, up to a a normalizing factor, as the asymptotic distribution
of V in extreme regions. Also, for any borelian subset A bounded away from 0 on which µ is
continuous, we have

t P (V ∈ tA) −−−→
t→∞

µ(A). (7.3)

Using the homogeneity property µ(t · ) = t−1µ( · ), µ can be decomposed into a radial
component and an angular component Φ, which are independent from each other. For all
v = (v1, ..., vd) ∈ Rd, set





R(v) := ‖v‖∞ =
d

max
i=1

vi,

Θ(v) :=

(
v1

R(v)
, ...,

vd
R(v)

)
∈ Sd−1

∞ ,
(7.4)

where Sd−1
∞ is the positive orthant of the unit sphere in Rd for the infinity norm. Define the

spectral measure (also called angular measure) by Φ(B) = µ({v : R(v) > 1,Θ(v) ∈ B}).
Then, for every B ⊂ Sd−1

∞ ,

µ{v : R(v) > z,Θ(v) ∈ B} = z−1Φ(B) . (7.5)

In a nutshell, there is a one-to-one correspondence between the exponent measure µ and the
angular measure Φ, both of them can be used to characterize the asymptotic tail dependence
of the distribution F (as soon as the margins Fj are known), since

µ
(
[0,x−1]c

)
=

∫

θ∈Sd−1
∞

max
j

θjxj dΦ(θ). (7.6)

Recall that here and beyond, operators on vectors are understood component-wise, so that
x−1 = (x−11 , . . . , x1

d). The angular measure can be seen as the asymptotic conditional dis-
tribution of the ‘angle’ Θ given that the radius R is large, up to the normalizing constant
Φ(Sd−1

∞ ). Indeed, dropping the dependence on V for convenience, we have for any continuity
set A of Φ,

P(Θ ∈ A | R > r) =
rP(Θ ∈ A,R > r)

rP(R > r)
−−−→
r→∞

Φ(A)

Φ(Sd−1∞ )
. (7.7)

7.2.1 Statement of the Statistical Problem

The focus of this work is on the dependence structure in extreme regions of a random vector
X in a multivariate domain of attraction (see (7.1)). This asymptotic dependence is fully de-
scribed by the exponent measure µ, or equivalently by the spectral measure Φ. The goal of this
contribution is to infer a meaningful (possibly sparse) summary of the latter. As shall be seen
below, since the support of µ can be naturally partitioned in a specific and interpretable man-
ner, this boils down to accurately recovering the mass spread on each element of the partition.
In order to formulate this approach rigorously, additional definitions are required.

Truncated cones. For any non empty subset of features α ⊂ {1, . . . , d}, consider the
truncated cone (see Fig. 7.1)

Cα = {v ≥ 0, ‖v‖∞ ≥ 1, vj > 0 for j ∈ α, vj = 0 for j /∈ α}. (7.8)
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The corresponding subset of the sphere is

Ωα = {x ∈ Sd−1
∞ : xi > 0 for i ∈ α , xi = 0 for i /∈ α} = Sd−1

∞ ∩ Cα,

and we clearly have µ(Cα) = Φ(Ωα) for any ∅ 6= α ⊂ {1, . . . , d}. The collection {Cα : ∅ 6=
α ⊂ {1, . . . , d}} forming a partition of the truncated positive orthant Rd

+ \ [0,1], one may
naturally decompose the exponent measure as

µ =
∑

∅6=α⊂{1,...,d}
µα, (7.9)

where each component µα is concentrated on the untruncated cone corresponding to Cα. Sim-
ilarly, the Ωα’s forming a partition of Sd−1

∞ , we have

Φ =
∑

∅6=α⊂{1,...,d}
Φα ,

where Φα denotes the restriction of Φ to Ωα for all ∅ 6= α ⊂ {1, . . . , d}. The fact that mass
is spread on Cα indicates that conditioned upon the event ‘R(V) is large’ (i.e. an excess of
a large radial threshold), the components V j(j ∈ α) may be simultaneously large while the
other V j’s (j /∈ α) are small, with positive probability. Each index subset α thus defines a
specific direction in the tail region.

However this interpretation should be handled with care, since for α 6= {1, . . . , d}, if µ(Cα) >
0, then Cα is not a continuity set of µ (it has empty interior), nor Ωα is a continuity set of Φ.
Thus, the quantity tP(V ∈ tCα) does not necessarily converge to µ(Cα) as t → +∞. Actually,
if F is continuous, we have P(V ∈ tCα) = 0 for any t > 0. However, consider for ǫ ≥ 0 the
ǫ-thickened rectangles

Rǫ
α = {v ≥ 0, ‖v‖∞ ≥ 1, vj > ǫ for j ∈ α, vj ≤ ǫ for j /∈ α}, (7.10)

Since the boundaries of the sets Rǫ
α are disjoint, only a countable number of them may be

discontinuity sets of µ. Hence, the threshold ǫ may be chosen arbitrarily small in such a way
that Rǫ

α is a continuity set of µ. The result stated below shows that nonzero mass on Cα is the
same as nonzero mass on Rǫ

α for ǫ arbitrarily small.

FIGURE 7.1: Truncated cones in 3D

FIGURE 7.2: Truncated ǫ-rectangles in
2D

Lemma 7.1. For any non empty index subset ∅ 6= α ⊂ {1, . . . , d}, the exponent measure of
Cα is

µ(Cα) = lim
ǫ→0

µ(Rǫ
α).
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Proof. First consider the case α = {1, . . . , d}. Then Rǫ
α’s forms an increasing sequence of

sets as ǫ decreases and Cα = R0
α = ∪ǫ>0,ǫ∈Q Rǫ

α. The result follows from the ‘continuity from
below’ property of the measure µ. Now, for ǫ ≥ 0 and α ( {1, . . . , d}, consider the sets

Oǫ
α = {x ∈ Rd

+ : ∀j ∈ α : xj > ǫ},
N ǫ

α = {x ∈ Rd
+ : ∀j ∈ α : xj > ǫ, ∃j /∈ α : xj > ǫ},

so that N ǫ
α ⊂ Oǫ

α and Rǫ
α = Oǫ

α \ N ǫ
α. Observe also that Cα = O0

α \ N0
α. Thus, µ(Rǫ

α) =
µ(Oǫ

α)− µ(N ǫ
α), and µ(Cα) = µ(O0

α)− µ(N0
α), so that it is sufficient to show that

µ(N0
α) = lim

ǫ→0
µ(N ǫ

α), and µ(O0
α) = lim

ǫ→0
µ(Oǫ

α).

Notice that the N ǫ
α’s and the Oǫ

α’s form two increasing sequences of sets (when ǫ decreases),
and that N0

α =
⋃

ǫ>0,ǫ∈QN ǫ
α, O0

α =
⋃

ǫ>0,ǫ∈QOǫ
α. This proves the desired result.

We may now make precise the above heuristic interpretation of the quantities µ(Cα): the vector
M = {µ(Cα) : ∅ 6= α ⊂ {1, . . . , d}} asymptotically describes the dependence structure of
the extremal observations. Indeed, by Lemma 7.1, and the discussion above, ǫ may be chosen
such that Rǫ

α is a continuity set of µ, while µ(Rǫ
α) is arbitrarily close to µ(Cα). Then, using

the characterization (7.3) of µ, the following asymptotic identity holds true:

lim
t→∞

tP
(
‖V‖∞ ≥ t, V j > ǫt (j ∈ α), V j ≤ ǫt (j /∈ α)

)
= µ(Rǫ

α) (7.11)

≃ µ(Cα).

Remark 7.2. In terms of conditional probabilities, denoting R = ‖T (X)‖, where T is the
standardization map X 7→ V, we have

P(T (X) ∈ rRǫ
α | R > r) =

rP(V ∈ rRǫ
α)

rP(V ∈ r([0,1]c)
−−−→
r→∞

µ(Rǫ
α)

µ([0,1]c)
,

as in (7.7). In other terms,

P
(
V j > ǫr (j ∈ α), V j ≤ ǫr (j /∈ α)

∣∣ ‖V‖∞ ≥ r
)
−−−→
r→∞

Cµ(Rǫ
α) (7.12)

≃ Cµ(Cα),

where C = 1/Φ(Sd−1
∞ ) = 1/µ([0,1]c). This clarifies the meaning of ‘large’ and ‘small’ in

the heuristic explanation given above.

Problem statement. As explained above, our goal is to describe the dependence on extreme
regions by investigating the structure of µ (or, equivalently, that of Φ). More precisely, the
aim is twofold. First, recover a rough approximation of the support of Φ based on the partition
{Ωα, α ⊂ {1, . . . , d}, α 6= ∅}, that is, determine which Ωα’s have nonzero mass, or equiva-
lently, which µ′αs (resp. Φα’s) are nonzero. This support estimation is potentially sparse (if a
small number of Ωα have non-zero mass) and possibly low-dimensional (if the dimension of
the sub-cones Ωα with non-zero mass is low). The second objective is to investigate how the
exponent measure µ spreads its mass on the Cα’s, the theoretical quantity µ(Cα) indicating to
which extent extreme observations may occur in the ‘direction’ α for ∅ 6= α ⊂ {1, . . . , d}.
These two goals are achieved using empirical versions of the angular measure defined in Sec-
tion 7.3.1, evaluated on the ǫ-thickened rectangles Rǫ

α. Formally, we wish to recover the
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(2d − 1)-dimensional unknown vector

M = {µ(Cα) : ∅ 6= α ⊂ {1, . . . , d}} (7.13)

from X1, . . . , Xn
i.i.d.∼ F and build an estimator M̂ such that

||M̂ −M||∞ = sup
∅6=α⊂{1, ..., d}

|M̂(α)− µ(Cα)|

is small with large probability. In view of Lemma 7.1, (biased) estimates of M’s components
are built from an empirical version of the exponent measure, evaluated on the ǫ-thickened
rectangles Rǫ

α (see Section 7.3.1 below). As a by-product, one obtains an estimate of the
support of the limit measure µ,

⋃

α: M̂(α)>0

Cα.

The results stated in the next section are non-asymptotic and sharp bounds are given by means
of VC inequalities tailored to low probability regions.

7.2.2 Regularity Assumptions

Beyond the existence of the limit measure µ (i.e. multivariate regular variation of V’s distri-
bution, see (7.2)), and thus, existence of an angular measure Φ (see (7.5)), three additional
assumptions are made, which are natural when estimation of the support of a distribution is
considered.

Assumption 1. The margins of X have continuous c.d.f., namely Fj , 1 ≤ j ≤ d is continuous.

Assumption 1 is widely used in the context of non-parametric estimation of the dependence
structure (see e.g. Einmahl & Segers (2009)): it ensures that the transformed variables V j =
(1−Fj(X

j))−1 (resp. U j = 1−Fj(X
j)) have indeed a standard Pareto distribution, P(V j >

x) = 1/x, x ≥ 1 (resp. the U j’s are uniform variables).

For any non empty subset α of {1, . . . , d}, one denotes by dxα the Lebesgue measure on Cα
and write dxα = dxi1 . . . dxik , when α = {i1, . . . , ik}. For convenience, we also write dxα\i
instead of dxα\{i}.

Assumption 2. Each component µα of (7.9) is absolutely continuous w.r.t. Lebesgue measure
dxα on Cα.

Assumption 2 has a very convenient consequence regarding Φ: the fact that the exponent
measure µ spreads no mass on subsets of the form {x : ‖x‖∞ ≥ 1, xi1 = · · · = xir 6= 0}
with r ≥ 2, implies that the spectral measure Φ spreads no mass on edges {x : ‖x‖∞ =
1, xi1 = · · · = xir = 1} with r ≥ 2 . This is summarized by the following result.

Lemma 7.3. Under Assumption 2, the following assertions holds true.

• Φ is concentrated on the (disjoint) edges

Ωα,i0 = {x : ‖x‖∞ = 1, xi0 = 1, 0 < xi < 1 for i ∈ α \ {i0} (7.14)

xi = 0 for i /∈ α }

for i0 ∈ α, ∅ 6= α ⊂ {1, . . . , d}.
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• The restriction Φα,i0 of Φ to Ωα,i0 is absolutely continuous w.r.t. the Lebesgue measure
dxα\i0 on the cube’s edges, whenever |α| ≥ 2.

Proof. The first assertion straightforwardly results from the discussion above. Turning to the
second point, consider any measurable set D ⊂ Ωα,i0 such that

∫
D dxα\i0 = 0. Then the

induced truncated cone D̃ = {v : ‖v‖∞ ≥ 1,v/‖v‖∞ ∈ D} satisfies
∫
D̃ dxα = 0 and

belongs to Cα. Thus, by virtue of Assumption 2, Φα,i0(D) = Φα(D) = µα(D̃) = 0.

It follows from Lemma 7.3 that the angular measure Φ decomposes as Φ =
∑

α

∑
i0∈αΦα,i0

and that there exist densities
dΦα,i0
dxαri0

, |α| ≥ 2, i0 ∈ α, such that for all B ⊂ Ωα, |α| ≥ 2,

Φ(B) = Φα(B) =
∑

i0∈α

∫

B∩Ωα,i0

dΦα,i0

dxαri0

(x)dxα\i0 . (7.15)

In order to formulate the next assumption, for |β| ≥ 2, we set

Mβ = sup
i∈β

sup
x∈Ωβ,i

dΦβ,i

dxβ\i
(x). (7.16)

Assumption 3. (SPARSE SUPPORT) The angular density is uniformly bounded on Sd−1
∞

(∀|β| ≥ 2, Mβ < ∞), and there exists a constant M > 0, such that we have
∑
|β|≥2Mβ < M ,

where the sum is over subsets β of {1, . . . , d} which contain at least two elements.

Remark 7.4. The constant M is problem dependent. However, in the case where our rep-
resentation M defined in (7.13) is the most informative about the angular measure, that is,
when the density of Φα is constant on Ωα, we have M ≤ d: Indeed, in such a case, M ≤∑
|β|≥2Mβ |β| =

∑
|β|≥2Φ(Ωβ) ≤

∑
β Φ(Ωβ) ≤ µ([0,1]c). The equality inside the last ex-

pression comes from the fact that the Lebesgue measure of a sub-sphere Ωα is |α|, for |α| ≥ 2.
Indeed, using the notations defined in Lemma 7.3, Ωα =

⊔
i0∈αΩα,i0 , each of the edges Ωα,i0

being unit hypercube. Now, µ([0,1]c) ≤ µ({v, ∃j, vj > 1} ≤ dµ({v, v1 > 1})) ≤ d.

Note that the summation
∑
|β|≥2Mβ |β| is smaller than d despite the (potentially large) factors

|β|. Considering
∑
|β|≥2Mβ is thus reasonable: in particular, M will be small when only few

Ωα’s have non-zero Φ-mass, namely when the representation vector M defined in (7.13) is
sparse.

Assumption 3 is naturally involved in the derivation of upper bounds on the error made when
approximating µ(Cα) by the empirical counterpart of µ(Rǫ

α). The estimation error bound
derived in Section 7.3 depends on the sparsity constant M .

7.3 A non-parametric estimator of the subcones’ mass : definition
and preliminary results

In this section, an estimator M̂(α) of each of the sub-cones’ mass µ(Cα), ∅ 6= α ⊂ {1, . . . , d},
is proposed, based on observations X1, . . . . ,Xn, i .i .d . copies of X ∼ F. Bounds on the error
||M̂ −M||∞ are established. In the remaining of this chapter, we work under Assumption 1
(continuous margins, see Section 7.2.2). Assumptions 2 and 3 are not necessary to prove
a preliminary result on a class of rectangles (Proposition 7.8 and Corollary 7.9). However,
they are required to bound the bias induced by the tolerance parameter ǫ (in Lemma 7.10,
Proposition 7.11 and in the main result, Theorem 7.12).
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7.3.1 A natural empirical version of the exponent measure mu

Since the marginal distributions Fj are unknown, we classically consider the empirical coun-
terparts of the Vi’s, V̂i = (V̂ 1

i , . . . , V̂
d
i ), 1 ≤ i ≤ n, as standardized variables obtained from

a rank transformation (instead of a probability integral transformation),

V̂i =
(
(1− F̂j(X

j
i ))
−1
)
1≤j≤d

,

where F̂j(x) = (1/n)
∑n

i=1 1{Xj
i <x}. We denote by T (resp. T̂ ) the standardization (resp.

the empirical standardization),

T (x) =

(
1

1− Fj(xj)

)

1≤j≤d
and T̂ (x) =

(
1

1− F̂j(xj)

)

1≤j≤d
. (7.17)

The empirical probability distribution of the rank-transformed data is then given by

P̂n = (1/n)
n∑

i=1

δ
V̂i

.

Since for a µ-continuity set A bounded away from 0, t P (V ∈ tA) → µ(A) as t → ∞,
see (7.3), a natural empirical version of µ is defined as

µn(A) =
n

k
P̂n(

n

k
A) =

1

k

n∑

i=1

1{V̂i∈n
k
A} . (7.18)

Here and throughout, we place ourselves in the asymptotic setting stipulating that k = k(n) >
0 is such that k → ∞ and k = o(n) as n → ∞. The ratio n/k plays the role of a large radial
threshold. Note that this estimator is commonly used in the field of non-parametric estimation
of the dependence structure, see e.g. Einmahl & Segers (2009).

7.3.2 Accounting for the non asymptotic nature of data: epsilon-thickening.

Since the cones Cα have zero Lebesgue measure, and since, under Assumption 1, the margins
are continuous, the cones are not likely to receive any empirical mass, so that simply counting
points in n

kCα is not an option: with probability one, only the largest dimensional cone (the
central one, corresponding to α = {1, . . . , d}) will be hit. In view of Subsection 7.2.1 and
Lemma 7.1, it is natural to introduce a tolerance parameter ǫ > 0 and to approximate the
asymptotic mass of Cα with the non-asymptotic mass of Rǫ

α. We thus define the non-parametric
estimator M̂(α) of µ(Cα) as

M̂(α) = µn(R
ǫ
α), ∅ 6= α ⊂ {1, . . . , d}. (7.19)

Evaluating M̂(α) boils down (see (7.18)) to counting points in (n/k)Rǫ
α, as illustrated in

Figure 7.3. The estimate M̂(α) is thus a (voluntarily ǫ-biased) natural estimator of Φ(Ωα) =
µ(Cα).

The coefficients (M̂(α))α⊂{1,...,d} related to the cones Cα constitute a summary representation
of the dependence structure. This representation is sparse as soon as the µn(R

ǫ
α) are positive

only for a few groups of features α (compared to the total number of groups or sub-cones, 2d
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FIGURE 7.3: Estimation procedure

namely). It is is low-dimensional as soon as each of these groups α is of small cardinality, or
equivalently the corresponding sub-cones are low-dimensional compared with d.

In fact, M̂(α) is (up to a normalizing constant) an empirical version of the conditional proba-
bility that T (X) belongs to the rectangle rRǫ

α, given that ‖T (X)‖ exceeds a large threshold r.
Indeed, as explained in Remark 7.2,

M(α) = lim
r→∞

µ([0,1]c) P(T (X) ∈ rRǫ
α | ‖T (X)‖ ≥ r). (7.20)

The remaining of this section is devoted to obtaining non-asymptotic upper bounds on the
error ||M̂−M||∞. The main result is stated in Theorem 7.12. Before all, notice that the error
may be obviously decomposed as the sum of a stochastic term and a bias term inherent to the
ǫ-thickening approach:

||M̂ −M||∞ = max
α

|µn(R
ǫ
α)− µ(Cα)|

≤ max
α

|µ− µn|(Rǫ
α) + max

α
|µ(Rǫ

α)− µ(Cα)| . (7.21)

Here and beyond, to keep the notation uncluttered, we simply denotes ‘α’ for ‘α non empty
subset of {1, . . . , d}’. The main steps of the argument leading to Theorem 7.12 are as fol-
lows. First, obtain a uniform upper bound on the error |µn − µ| restricted to a well chosen VC
class of rectangles (Subsection 7.3.3), and deduce an uniform bound on |µn − µ|(Rǫ

α) (Sub-
section 7.3.4). Finally, using the regularity assumptions (Assumption 2 and Assumption 3),
bound the difference |µ(Rǫ

α)− µ(Cα)| (Subsection 7.3.5).

7.3.3 Preliminaries: uniform approximation over a VC-class of rectangles

This subsection builds on the theory developed in Chapter 6, where a non-asymptotic bound is
stated on the estimation of the stable tail dependence function (defined in (3.12)). The STDF l is
related to the class of sets of the form [0,v]c (or [u,∞]c depending on which standardization
is used), and an equivalent definition is

l(x) := lim
t→∞

tF̃ (t−1x) = µ([0,x−1]c) (7.22)
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with F̃ (x) = (1−F )
(
(1−F1)

←(x1), . . . , (1−Fd)
←(xd)

)
. Here the notation (1−Fj)

←(xj)
denotes the quantity sup{y : 1 − Fj(y) ≥ xj}. Recall that the marginally uniform variable
U is defined by U j = 1− Fj(X

j) (1 ≤ j ≤ d). Then in terms of standardized variables U j ,

F̃ (x) = P
( d⋃

j=1

{U j < xj}
)
= P(U ∈ [x,∞[c) = P(V ∈ [0,x−1]c). (7.23)

A natural estimator of l is its empirical version defined as follows, see Huang (1992), Qi
(1997), Drees & Huang (1998), Einmahl et al. (2006), Goix et al. (2015b):

ln(x) =
1

k

n∑

i=1

1{X1
i ≥X1

(n−⌊kx1⌋+1)
or ... or Xd

i ≥Xd
(n−⌊kxd⌋+1)

} . (7.24)

The expression is indeed suggested by the definition of l in (7.22), with all distribution func-
tions and univariate quantiles replaced by their empirical counterparts, and with t replaced by
n/k. The following lemma allows to derive alternative expressions for the empirical version
of the STDF.

Lemma 7.5. Consider the rank transformed variables Ûi = (V̂i)
−1 = (1 − F̂j(X

j
i ))1≤j≤d

for i = 1, . . . , n. Then, for (i, j) ∈ {1, . . . , n} × {1, . . . , d}, with probability one,

Û j
i ≤ k

n
x−1j ⇔ V̂ j

i ≥ n

k
xj ⇔ Xj

i ≥ Xj

(n−⌊kx−1
j ⌋+1)

⇔ U j
i ≤ U j

(⌊kx−1
j ⌋)

.

The proof of Lemma 7.5 is standard and is provided in Section 7.7 for completeness. By
Lemma 7.5, the following alternative expression of ln(x) holds true:

ln(x) =
1

k

n∑

i=1

1{U1
i ≤ U1

([kx1])
or ... or Ud

i ≤ Ud
([kxd])

} = µn

(
[0,x−1]c

)
. (7.25)

Thus, bounding the error |µn − µ|([0,x−1]c) is the same as bounding |ln − l|(x).

Asymptotic properties of this empirical counterpart have been studied in Huang (1992), Drees
& Huang (1998), Embrechts et al. (2000) and De Haan & Ferreira (2007) in the bivariate case,
and Qi (1997), Einmahl et al. (2012). in the general multivariate case. In Goix et al. (2015b),
a non-asymptotic bound is established on the maximal deviation

sup
0≤x≤T

|l(x)− ln(x)|

for a fixed T > 0, or equivalently on

sup
1/T≤x

|µ([0,x]c)− µn([0,x]
c)| .

The exponent measure µ is indeed easier to deal with when restricted to the class of sets of the
form [0,x]c, which is fairly simple in the sense that it has finite VC dimension.

In the present work, an important step is to bound the error on the class of ǫ-thickened rectan-
gles Rǫ

α. This is achieved by using a more general class R(x, z, α, β), which includes (contrary
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to the collection of sets [0,x]c) the Rǫ
α’s . This flexible class is defined by

R(x, z, α, β) =
{
y ∈ [0,∞]d, yj ≥ xj for j ∈ α,

yj < zj for j ∈ β
}
, x, z ∈ [0,∞]d. (7.26)

Thus,

µn (R(x, z, α, β)) =
1

k

n∑

i=1

1{V̂ j
i ≥ n

k
xj for j∈α and V̂ j

i < n
k
xj for j∈β} .

Then, define the functional gα,β (which plays the same role as the STDF) as follows: for
x ∈ [0,∞]d \ {∞}, z ∈ [0,∞]d, α ⊂ {1, . . . , d} \ ∅ and β ⊂ {1, . . . , d}, let

gα,β(x, z) = lim
t→∞

tF̃α,β(t
−1x, t−1z), with (7.27)

F̃α,β(x, z) = P
[{

U j ≤ xj for j ∈ α
} ⋂ {

U j > zj for j ∈ β
}]

. (7.28)

Notice that F̃α,β(x, z) is an extension of the non-asymptotic approximation F̃ in (7.22).
By (7.27) and (7.28), we have

gα,β(x, z) = lim
t→∞

tP
[{

U j ≤ t−1xj for j ∈ α
} ⋂ {

U j > t−1zj for j ∈ β
}]

= lim
t→∞

tP
[
V ∈ tR(x−1, z−1, α, β)

]
,

so that using (7.3),

gα,β(x, z) = µ([R(x−1, z−1, α, β)]). (7.29)

The following lemma makes the relation between gα,β and the angular measure Φ explicit. Its
proof is given in Section 7.7.

Lemma 7.6. The function gα,β can be represented as follows:

gα,β(x, z) =

∫

Sd−1


∧

j∈α
wjxj −

∨

j∈β
wjzj




+

Φ(dw) ,

where u ∧ v = min{u, v}, u ∨ v = max{u, v} and u+ = max{u, 0} for any (u, v) ∈ R2.
Thus, gα,β is homogeneous and satisfies

|gα,β(x, z)− gα,β(x
′, z′)| ≤

∑

j∈α
|xj − x′j | +

∑

j∈β
|zj − z′j | ,

Remark 7.7. Lemma 7.6 shows that the functional gα,β , which plays the same role as a the
STDF, enjoys a Lipschitz property.

We now define the empirical counterpart of gα,β (mimicking that of the empirical STDF ln in
(7.24) ) by

gn,α,β(x, z) =
1

k

n∑

i=1

1{Xj
i≥X

j
(n−⌊kxj⌋+1)

for j∈α and Xj
i <Xj

(n−⌊kxj⌋+1)
for j∈β} . (7.30)
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As it is the case for the empirical STDF (see (7.25)), gn,α,β has an alternative expression

gn,α,β(x, z) =
1

k

n∑

i=1

1{Uj
i ≤ Uj

([kxj ])
for j∈α and Uj

i > Uj
([kxj ])

for j∈β}

= µn

(
R(x−1, z−1, α, β)

)
, (7.31)

where the last equality comes from the equivalence V̂ j
i ≥ n

kxj ⇔ U j
i ≤ U j

(⌊kx−1
j ⌋)

(Lemma 7.5) and from the expression µn( · ) = 1
k

∑n
i=1 1V̂i∈n

k
( · ), definition (7.18).

The proposition below extends the result of Goix et al. (2015b), by deriving an analogue upper
bound on the maximal deviation

max
α,β

sup
0≤x,z≤T

|gα,β(x, z)− gn,α,β(x, z)| ,

or equivalently on

max
α,β

sup
1/T≤x,z

|µ(R(x, z, α, β))− µn(R(x, z, α, β))| .

Here and beyond we simply denote ‘α, β’ for ‘α non-empty subset of {1, . . . , d} \ ∅ and
β subset of {1, . . . , d}’. We also recall that comparison operators between two vectors (or
between a vector and a real number) are understood component-wise, i.e. ‘x ≤ z’ means
‘xj ≤ zj for all 1 ≤ j ≤ d’ and for any real number T , ‘x ≤ T ’ means ‘xj ≤ T for all
1 ≤ j ≤ d’.

Proposition 7.8. Let T ≥ 7
2(

log d
k + 1), and δ ≥ e−k. Then there is a universal constant C,

such that for each n > 0, with probability at least 1− δ,

max
α,β

sup
0≤x,z≤T

|gn,α,β(x, z)− gα,β(x, z)| ≤ Cd

√
2T

k
log

d+ 3

δ
(7.32)

+max
α,β

sup
0≤x,z≤2T

∣∣∣∣
n

k
F̃α,β(

k

n
x,

k

n
z)− gα,β(x, z)

∣∣∣∣ .

The second term on the right hand side of the inequality is an asymptotic bias term which goes
to 0 as n → ∞ (see Remark 7.24).

The proof follows the same lines as that of Theorem 6 in Goix et al. (2015b) and is detailed in
Section 7.7. Here is the main argument.

The empirical estimator is based on the empirical measure of ‘extreme’ regions, which are
hit only with low probability. It is thus enough to bound maximal deviations on such low
probability regions. The key consists in choosing an adaptive VC class which only covers
the latter regions (after standardization to uniform margins), namely a VC class composed
of sets of the kind k

nR(x−1, z−1, α, β)−1. In Goix et al. (2015b), VC-type inequalities have
been established that incorporate p, the probability of hitting the class at all. Applying these
inequalities to the particular class of rectangles gives the result.

7.3.4 Bounding empirical deviations over thickened rectangles

The aim of this subsection is to bound |µn−µ|(Rǫ
α) uniformly over α exploiting the previously

established bound on the deviations on rectangles, to obtain another uniform bound for |µn −
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µ|(Rǫ
α), for ǫ > 0 and α ⊂ {1, . . . , d}. In the remainder of the chapter, ᾱ denotes the

complementary set of α in {1, . . . , d}. Notice that directly from their definitions (7.10) and
(7.26), Rǫ

α and R(x, z, α, β) are linked by:

Rǫ
α = R(ǫ, ǫ, α, ᾱ) ∩ [0,1]c = R(ǫ, ǫ, α, ᾱ) \R(ǫ, ǫ̃, α, {1, . . . , d})

where ǫ̃ is defined by ǫ̃j = 1j∈α + ǫ1j /∈α for all j ∈ {1, . . . , d}. Indeed, we have:
R(ǫ, ǫ, α, ᾱ) ∩ [0,1] = R(ǫ, ǫ̃, α, {1, . . . , d}). As a result, for ǫ < 1,

sup
ǫ≤x,z

|µn − µ| (Rǫ
α) ≤ 2 sup

ǫ≤x,z
|µn − µ| (R(x, z, α, ᾱ)) .

On the other hand, from (7.31) and (7.29) we have

sup
ǫ≤x,z

|µn − µ| (R(x, z, α, ᾱ)) = sup
0≤x,z≤ǫ−1

|gn,α,ᾱ(x, z)− gα,ᾱ(x, z)| .

Then Proposition 7.8 applies with T = 1/ǫ and the following result holds true.

Corollary 7.9. Let 0 < ǫ ≤ (72(
log d
k +1))−1, and δ ≥ e−k. Then there is a universal constant

C, such that for each n > 0, with probability at least 1− δ,

max
α

sup
ǫ≤x,z

|(µn − µ)(Rǫ
α)| ≤ Cd

√
1

ǫk
log

d+ 3

δ
(7.33)

+max
α,β

sup
0≤x,z≤2ǫ−1

∣∣∣∣
n

k
F̃α,β(

k

n
x,

k

n
z)− gα,β(x, z)

∣∣∣∣ .

7.3.5 Bounding the bias induced by thickened rectangles

In this section, the aim is to bound |µ(Rǫ
α)−µ(Cα)| uniformly over α; in other words, to derive

an upper bound on the bias induced by handling ǫ-thickened rectangles. As the rectangles Rǫ
α

defined in (7.10) do not correspond to any set of angles on the sphere Sd−1
∞ , we also define the

(ǫ, ǫ′)-thickened cones

Cǫ,ǫ′
α = {v ≥ 0, ‖v‖∞ ≥ 1, vj > ǫ‖v‖∞ for j ∈ α, vj ≤ ǫ′‖v‖∞ for j /∈ α}, (7.34)

which verify Cǫ,0
α ⊂ Rǫ

α ⊂ C0,ǫ
α . Define the corresponding (ǫ, ǫ′)-thickened sub-sphere

Ωǫ,ǫ′
α =

{
x ∈ Sd−1

∞ , xi > ǫ for i ∈ α , xi ≤ ǫ′ for i /∈ α
}
= Cǫ,ǫ′

α ∩ Sd−1
∞ . (7.35)

It is then possible to approximate rectangles Rǫ
α by the cones Cǫ,0

α and C0,ǫ
α , and then µ(Rǫ

α) by

Φ(Ωǫ,ǫ′
α ) in the sense that

Φ(Ωǫ,0
α ) = µ(Cǫ,0

α ) ≤ µ(Rǫ
α) ≤ µ(C0,ǫ

α ) = Φ(Ω0,ǫ
α ). (7.36)

The next result (proved in Section 7.7) is a preliminary step toward a bound on |µ(Rǫ
α) −

µ(Cα)|. It is easier to use the absolute continuity of Φ instead of that of µ, since the rectangles

Rǫ
α are not bounded contrary to the sub-spheres Ωǫ,ǫ′

α .

Lemma 7.10. For every ∅ 6= α ⊂ {1, . . . , d} and 0 < ǫ, ǫ′ < 1/2, we have

|Φ(Ωǫ,ǫ′
α )− Φ(Ωα)| ≤ M |α|2ǫ + Mdǫ′ .
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Now, notice that

Φ(Ωǫ,0
α )− Φ(Ωα) ≤ µ(Rǫ

α)− µ(Cα) ≤ Φ(Ω0,ǫ
α )− Φ(Ωα).

We obtain the following proposition.

Proposition 7.11. For every non empty set of indices ∅ 6= α ⊂ {1, . . . , d} and ǫ > 0,

|µ(Rǫ
α)− µ(Cα)| ≤ Md2ǫ

7.3.6 Main result

We can now state the main result of the contribution, revealing the accuracy of the estimate
(7.19).

Theorem 7.12. There is an universal constant C > 0 such that for every n, k, ǫ, δ verifying
δ ≥ e−k, 0 < ǫ < 1/2 and ǫ ≤ (72(

log d
k + 1))−1, the following inequality holds true with

probability greater than 1− δ:

‖M̂ −M‖∞ ≤ Cd

(√
1

ǫk
log

d

δ
+Mdǫ

)

+ 4 max
α ⊂ {1,...,d}

α 6=∅

sup
0≤x,z≤ 2

ǫ

∣∣∣∣
n

k
F̃α,ᾱ(

k

n
x,

k

n
z)− gα,ᾱ(x, z)

∣∣∣∣ .

Note that 7
2(

log d
k +1) is smaller than 4 as soon as log d/k < 1/7, so that a sufficient condition

on ǫ is ǫ < 1/4. The last term in the right hand side is a bias term which goes to zero as n → ∞
(see Remark 7.24). The term Mdǫ is also a bias term, which represents the bias induced by
considering ǫ-thickened rectangles. It depends linearly on the sparsity constant M defined in
Assumption 3. The value k can be interpreted as the effective number of observations used in
the empirical estimate, i.e. the effective sample size for tail estimation. Considering classical
inequalities in empirical process theory such as VC-bounds, it is thus no surprise to obtain
one in O(1/

√
k). Too large values of k tend to yield a large bias, whereas too small values

of k yield a large variance. For a more detailed discussion on the choice of k we recommend
Einmahl et al. (2009).

The proof is based on decomposition (7.21). The first term supα |µn(R
ǫ
α)−µ(Rǫ

α)| on the right
hand side of (7.21) is bounded using Corollary 7.9, while Proposition 7.11 allows to bound the
second one (bias term stemming from the tolerance parameter ǫ). Introduce the notation

bias(α, n, k, ǫ) = 4 sup
0≤x,z≤ 2

ǫ

∣∣∣∣
n

k
F̃α,ᾱ(

k

n
x,

k

n
z)− gα,ᾱ(x, z)

∣∣∣∣ . (7.37)

With probability at least 1− δ,

∀ ∅ 6= α ⊂ {1, . . . , d},

|µn(R
ǫ
α)− µ(Cα)| ≤ Cd

√
1

ǫk
log

d+ 3

δ
+ bias(α, n, k, ǫ) +Md2ǫ .

The upper bound stated in Theorem 7.12 follows.

Remark 7.13. (THRESHOLD ON THE ESTIMATOR) In practice, we have to deal with non-
asymptotic noisy data, so that many M̂(α)’s have very small values though the corresponding
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M(α)’s are null. One solution is thus to define a threshold value, for instance a proportion p of
the averaged mass over all the faces α with positive mass, i.e. threshold = p|A|−1∑α M̂(α)

with A = {α, M̂(α) > 0} . Let us define M̃(α) the obtained thresholded M̂(α). Then the
estimation error satisfies:

‖M̃ −M‖∞ ≤ ‖M̃ − M̂‖∞ + ‖M̂ −M‖∞
≤ p|A|−1

∑

α

M̂(α) + ‖M̂ −M‖∞

≤ p|A|−1
∑

α

M(α) + p|A|−1
∑

α

|M̂(α)−M(α)|

+ ‖M̂ −M‖∞
≤ (p+ 1)‖M̂ −M‖∞ + p|A|−1µ([0, 1]c).

It is outside the scope of this chapter to study optimal values for p. However, Remark 7.14
writes the estimation procedure as an optimization problem, thus exhibiting a link between
thresholding and L1-regularization.

Remark 7.14. (UNDERLYING RISK MINIMIZATION PROBLEMS) Our estimate M̂(α) can be
interpreted as a solution of an empirical risk minimization problem inducing a conditional
empirical risk R̂n. When adding a L1 regularization term to this problem, we recover M̃(α),
the thresholded estimate.

First recall that M̂(α) is defined for α ⊂ {1, . . . , d}, α 6= ∅ by M̂(α) = 1/k
∑n

i=1 1 k
n
V̂i∈Rǫ

α
.

As Rǫ
α ⊂ [0,1]c, we may write

M̂(α) =
(n
k
Pn(

k

n
‖V̂1‖ ≥ 1)

) ( 1
n

n∑

i=1

1 k
n
V̂i∈Rǫ

α
1 k

n
‖V̂i‖≥1

Pn(
k
n‖V̂1‖ ≥ 1)

)
,

where the last term is the empirical expectation of Zn,i(α) = 1 k
n
V̂i∈Rǫ

α
conditionally to the

event {‖ k
nV̂1‖ ≥ 1}, and Pn(

k
n‖V̂1‖ ≥ 1) = 1

n

∑n
i=1 1 k

n
‖V̂i‖≥1. According to Lemma 7.5,

for each fixed margin j, V̂ j
i ≥ n

k if, and only if Xj
i ≥ Xj

(n−k+1), which happens for k
observations exactly. Thus,

Pn(
k

n
‖V̂1‖ ≥ 1) =

1

n

n∑

i=1

1∃j,V̂j
i≥n

k
∈
[
k

n
,
dk

n

]
.

If we define k̃ = k̃(n) ∈ [k, dk] such that Pn(
k
n‖V̂1‖ ≥ 1) = k̃

n , we then have

M̂(α) =
k̃

k

(
1

n

n∑

i=1

1 k
n
V̂i∈Rǫ

α
1 k

n
‖V̂i‖≥1

Pn(
k
n‖V̂1‖ ≥ 1)

)

=
k̃

k
argmin
mα>0

n∑

i=1

(Zn,i(α)−mα)
2
1 k

n
‖V̂i‖≥1,

Considering now the (2d − 1)-vector M̂ and ‖.‖2,α the L2-norm on R2d−1, we immediately
have (since k(n) does not depend on α)

M̂ =
k̃

k
argmin
m∈R2d−1

R̂n(m), (7.38)
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where R̂n(m) =
∑n

i=1 ‖Zn,i − m‖22,α1 k
n
‖V̂i‖≥1 is the L2-empirical risk of m, restricted to

extreme observations, namely to observations Xi satisfying ‖V̂i‖ ≥ n
k . Then, up to a constant

k̃
k = Θ(1), M̂ is solution of an empirical conditional risk minimization problem. Define the

non-asymptotic theoretical risk Rn(m) for m ∈ R2d−1 by

Rn(m) = E

[
‖Zn −m‖22,α

∣∣∣‖k
n
V1‖∞ ≥ 1

]

with Zn := Zn,1. Then one can show (see Section 7.7) that Zn, conditionally to the event
{‖ k

nV1‖ ≥ 1}, converges in distribution to a variable Z∞ which is a multinomial distribution

on R2d−1 with parameters (n = 1, pα = µ(Rǫ
α)

µ([0,1]c) , α ∈ {1, . . . , n}, α 6= ∅). In other words,

P(Z∞(α) = 1) =
µ(Rǫ

α)

µ([0,1]c)

for all α ∈ {1, . . . , n}, α 6= ∅, and
∑

α Z∞(α) = 1. Thus Rn(m) → R∞(m) := E[‖Z∞ −
m‖22,α], which is the asymptotic risk. Moreover, the optimization problem

min
m∈R2d−1

R∞(m)

admits m = ( µ(Rǫ
α)

µ([0,1]c) , α ⊂ {1, . . . , n}, α 6= ∅) as solution.

Considering the solution of the minimization problem (7.38), which happens to coincide
with the definition of M̂, makes then sense if the goal is to estimate M := (µ(Rǫ

α), α ∈
{1, . . . , n}, α 6= ∅). As well as considering thresholded estimators M̃(α), since it amounts
(up to a bias term) to add a L1-penalization term to the underlying optimization problem: Let
us consider

min
m∈R2d−1

R̂n(m) + λ‖m‖1,α

with ‖m‖1,α =
∑

α |m(α)| the L1 norm on R2d−1. In this optimization problem, only ex-
treme observations are involved. It is a well known fact that solving it is equivalent to soft-
thresholding the solution of the same problem without the penality term – and then, up to a
bias term due to the soft-thresholding, it boils down to setting to zero features m(α) which are
less than some fixed threshold T (λ). This is an other interpretation on thresholding as defined
in Remark 7.13.

7.4 Application to Anomaly Detection

7.4.1 Extremes and Anomaly Detection.

As a matter of fact, ‘extreme’ observations are often more susceptible to be anomalies than
others. In other words, extremal observations are often at the border between normal and ab-
normal regions and play a very special role in this context. As the number of observations
considered as extreme (e.g. in a Peak-over-threshold analysis) typically constitute less than
one percent of the data, a classical anomaly detection algorithm would tend to systematically
classify all of them as abnormal: it is not worth the risk (in terms of ROC or precision-recall
curve for instance) trying to be more accurate in low probability regions without adapted tools.
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Also, new observations outside the ‘observed support’ are most often predicted as abnormal.
However, false positives (i.e. false alarms) are very expensive in many applications (e.g. air-
craft predictive maintenance). It is thus of primal interest to develop tools increasing precision
(i.e. the probability of observing an anomaly among alarms) on such extremal regions.

Contributions. The algorithm proposed in this chapter provides a scoring function which
ranks extreme observations according to their supposed degree of abnormality. This method
is complementary to other anomaly detection algorithms, insofar as two algorithms (that de-
scribed here, together with any other appropriate anomaly detection algorithm) may be trained
on the same dataset. Afterwards, the input space may be divided into two regions – an extreme
region and a non-extreme one– so that a new observation in the central region (resp. in the ex-
tremal region) would be classified as abnormal or not according to the scoring function issued
by the generic algorithm (resp. the one presented here). The scope of our algorithm concerns
both novelty detection (training data only contain normal data) and unsupervised (training data
contain unlabeled normal and abnormal data) problems. Undoubtedly, as it consists in learn-
ing a ‘normal’ (i.e. not abnormal) behavior in extremal regions, it is optimally efficient when
trained on ‘normal’ observations only. However it also applies to unsupervised situations.
Indeed, it involves a non-parametric but relatively coarse estimation scheme which prevents
from over-fitting normal data or fitting anomalies. As a consequence, this method is robust to
outliers and also applies when the training dataset contains a (small) proportion of anomalies.

7.4.2 DAMEX Algorithm: Detecting Anomalies among Multivariate Extremes

The purpose of this subsection is to explain the heuristic behind the use of multivariate EVT
for anomaly detection, which is in fact a natural way to proceed when trying to describe the
dependence structure of extreme regions. The algorithm is thus introduced in an intuitive
setup, which matches the theoretical framework and results obtained in sections 7.2 and 7.3.
The notations are the same as above: X = (X1, . . . , Xd) is a random vector in Rd, with
joint (resp. marginal) distribution F (resp. Fj , j = 1, . . . , d) and X1, . . . . ,Xn ∼ F is an
i .i .d . sample. The first natural step to study the dependence between the margins Xj is to
standardize them, and the choice of standard Pareto margins (with survival function x 7→ 1/x)
is convenient: Consider thus the Vi’s and V̂i’s as defined in Section 7.2. One possible strategy
to investigate the dependence structure of extreme events is to characterize, for each subset of
features α ⊂ {1, ..., d}, the ‘correlation’ of these features given that one of them at least is large
and the others are small. Formally, we associate to each such α a coefficient M(α) reflecting
the degree of dependence between the features α. This coefficient is to be proportional to the
expected number of points Vi above a large radial threshold (‖V‖∞ > r), verifying V j

i ‘large’
for j ∈ α, while V j

i ‘small’ for j /∈ α. In order to define the notion of ‘large’ and ‘small’,
fix a (small) tolerance parameter 0 < ǫ < 1. Thus, our focus is on the expected proportion of
points ‘above a large radial threshold’ r which belong to the truncated rectangles Rǫ

α defined
in (7.10). More precisely, our goal is to estimate the above expected proportion, when the
tolerance parameter ǫ goes to 0.

The standard empirical approach –counting the number of points in the regions of interest–
leads to estimates M̂(α) = µn(R

ǫ
α) (see (7.19)), with µn the empirical version of µ defined

in (7.18), namely:

M̂(α) = µn(R
ǫ
α) =

n

k
P̂n

(n
k
Rǫ

α

)
, (7.39)

where we recall that P̂n = (1/n)
∑n

i=1 δV̂i
is the empirical probability distribution of the rank-

transformed data, and k = k(n) > 0 is such that k → ∞ and k = o(n) as n → ∞. The ratio
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n/k plays the role of a large radial threshold r. From our standardization choice, counting
points in (n/k)Rǫ

α boils down to selecting, for each feature j ≤ d, the ‘k largest values’
Xj

i among n observations. According to the nature of the extremal dependence, a number
between k and dk of observations are selected: k in case of perfect dependence, dk in case of
‘independence’, which means, in the EVT framework, that the components may only be large
one at a time. In any case, the number of observations considered as extreme is proportional
to k, whence the normalizing factor n

k .

The coefficients (M̂(α))α⊂{1,...,d} associated with the cones Cα constitute our representation

of the dependence structure. This representation is sparse as soon as the M̂(α) are positive
only for a few groups of features α (compared with the total number of groups, or sub-cones,
2d − 1). It is is low-dimensional as soon as each of these groups has moderate cardinality |α|,
i.e. as soon as the sub-cones with positive M̂(α) are low-dimensional relatively to d.

In fact, up to a normalizing constant, M̂(α) is an empirical version of the probability that
T (X) belongs to the cone Cα, conditioned upon exceeding a large threshold. Indeed, for r, n
and k sufficiently large, we have (Remark 7.2 and (7.20), reminding that V = T (X))

M̂(α) ≃ CP(T (X) ∈ rRǫ
α | ‖T (X)‖ ≥ r).

Introduce an ‘angular scoring function’

wn(x) =
∑

α

M̂(α)1{T̂ (x)∈Rǫ
α}. (7.40)

For each fixed (new observation) x, wn(x) approaches the probability that the random variable
X belongs to the same cone as x in the transformed space. In short, wn(x) is an empirical
version of the probability that X and x have approximately the same ‘direction’. For anomaly
detection, the degree of ‘abnormality’ of the new observation x should be related both to
wn(x) and to the uniform norm ‖T̂ (x)‖∞ (angular and radial components). More precisely,
for x fixed such that T (x) ∈ Rǫ

α. Consider the ‘directional tail region’ induced by x, Ax =
{y : T (y) ∈ Rǫ

α , ‖T (y)‖∞ ≥ ‖T (x)‖∞}. Then, if ‖T (x)‖∞ is large enough, we have
(using (7.5)) that

P (X ∈ Ax) = P (V ∈ ‖T (x)‖∞Rǫ
α)

= P (‖V‖ ≥ ‖T (x)‖) P (V ∈ ‖T (x)‖∞Rǫ
α | ‖V‖ ≥ ‖T (x)‖)

≃ C P (‖V‖ ≥ ‖T (x)‖) M̂(α)

= C ‖T̂ (x)‖−1∞ wn(x).

This yields the scoring function

sn(x) :=
wn(x)

‖T̂ (x)‖∞
, (7.41)

which is thus (up to a scaling constant C) an empirical version of P(X ∈ Ax): the smaller
sn(x), the more abnormal the point x should be considered. As an illustrative example, Fig-
ure 7.4 displays the level sets of this scoring function, both in the transformed and the non-
transformed input space, in the 2D situation. The data are simulated under a 2D logistic
distribution with asymmetric parameters.

This heuristic argument explains the following algorithm, referred to as Detecting Anomaly
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FIGURE 7.4: Level sets of sn on simulated 2D data

with Multivariate EXtremes (DAMEX in abbreviated form). Note that this is a slightly modi-
fied version of the original DAMEX algorithm empirically tested in Goix et al. (2016c), where
ǫ-thickened sub-cones instead of ǫ-thickened rectangles are considered. The proof is more
straightforward when considering rectangles and performance remains as good. The complex-
ity is in O(dn log n + dn) = O(dn log n), where the first term on the left-hand-side comes
from computing the F̂j(X

j
i ) (Step 1) by sorting the data (e.g. merge sort). The second one

arises from Step 2.

Algorithm 3 DAMEX
Input: parameters ǫ > 0, k = k(n), p ≥ 0.

1. Standardize via marginal rank-transformation: V̂i :=
(
1/(1− F̂j(X

j
i ))
)
j=1,...,d

.

2. Assign to each V̂i the cone Rǫ
α it belongs to.

3. Compute M̂(α) from (7.39) → yields: (small number of) cones with non-zero mass.

4. (Optional) Set to 0 the M̂(α) below some small threshold defined in remark 7.13
w.r.t. p.→ yields: (sparse) representation of the dependence structure

{
M̂(α) : ∅α ⊂ {1, . . . , d}

}
. (7.42)

Output: Compute the scoring function given by (7.41),

sn(x) := (1/‖T̂ (x)‖∞)
∑

α

M̂(α)1
T̂ (x)∈Rǫ

α
.

Before investigating how the algorithm above empirically performs when applied to synthet-
ic/real datasets, a few remarks are in order.

Remark 7.15. (INTERPRETATION OF THE PARAMETERS) In view of (7.39), n/k is the thresh-
old above which the data are considered as extreme and k is proportional to the number of such
data, a common approach in multivariate extremes. The tolerance parameter ǫ accounts for the
non-asymptotic nature of data. The smaller k, the smaller ǫ shall be chosen. The additional
angular mass threshold in step 4. acts as an additional sparsity inducing parameter. Note that
even without this additional step (i.e. setting p = 0, the obtained representation for real-world



112 Chapter 7. Sparse Representation of Multivariate Extremes

data (see Table 7.2) is already sparse (the number of charges cones is significantly less than
2d).

Remark 7.16. (CHOICE OF PARAMETERS) A standard choice of parameters (ǫ, k, p) is re-
spectively (0.01, n1/2, 0.1). However, there is no simple manner to choose optimally these
parameters, as there is no simple way to determine how fast is the convergence to the (asymp-
totic) extreme behavior –namely how far in the tail appears the asymptotic dependence struc-
ture. Indeed, even though the first term of the error bound in Theorem 7.12 is proportional,

up to re-scaling, to
√

1
ǫk +

√
ǫ, which suggests choosing ǫ of order k−1/4, the unknown bias

term perturbs the analysis and in practice, one obtains better results with the values above
mentioned. In a supervised or novelty-detection framework (or if a small labeled dataset is
available) these three parameters should be chosen by cross-validation. In the unsupervised
situation, a classical heuristic (Coles et al. (2001)) is to choose (k, ǫ) in a stability region of the
algorithm’s output: the largest k (resp. the larger ǫ) such that when decreased, the dependence
structure remains stable. This amounts to selecting as many data as possible as being extreme
(resp. in low dimensional regions), within a stability domain of the estimates, which exists
under the primal assumption (7.1) and in view of Lemma 7.1.

Remark 7.17. (DIMENSION REDUCTION) If the extreme dependence structure is low dimen-
sional, namely concentrated on low dimensional cones Cα – or in other terms if only a limited
number of margins can be large together – then most of the V̂i’s will be concentrated on the
Rǫ

α’s such that |α| (the dimension of the cone Cα) is small; then the representation of the
dependence structure in (7.42) is both sparse and low dimensional.

Remark 7.18. (SCALING INVARIANCE) DAMEX produces the same result if the input data are
transformed in such a way that the marginal order is preserved. In particular, any marginally
increasing transform or any scaling as a preprocessing step does not affect the algorithm. It also
implies invariance with respect to any change in the measuring units. This invariance property
constitutes part of the strength of the algorithm, since data preprocessing steps usually have a
great impact on the overall performance and are of major concern in practice.

7.5 Experimental results

7.5.1 Recovering the support of the dependence structure of generated data

Datasets of size 50000 (respectively 100000, 150000) are generated in R10 according to a
popular multivariate extreme value model, introduced by Tawn (1990), namely a multivariate
asymmetric logistic distribution (Glog). The data have the following features: (i) they resemble
‘real life’ data, that is, the Xj

i ’s are non zero and the transformed V̂i’s belong to the interior
cone C{1,...,d}, (ii) the associated (asymptotic) exponent measure concentrates on K disjoint
cones {Cαm , 1 ≤ m ≤ K}. For the sake of reproducibility,

Glog(x) = exp{−
K∑

m=1


∑

j∈αm

(|A(j)|xj)−1/wαm




wαm

},

where |A(j)| is the cardinal of the set {α ∈ D : j ∈ α} and where wαm = 0.1 is a dependence
parameter (strong dependence). The data are simulated using Algorithm 2.2 in Stephenson
(2003). The subset of sub-cones D charged by µ is randomly chosen (for each fixed number of
sub-cones K) and the purpose is to recover D by Algorithm 3. For each K, 100 experiments
are made and we consider the number of ‘errors’, that is, the number of non-recovered or
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false-discovered sub-cones. Table 7.1 shows the averaged numbers of errors among the 100
experiments. The results are very promising in situations where the number of sub-cones is

TABLE 7.1: Support recovering on simulated data

# sub-cones K 3 5 10 15 20 25 30 35 40 45 50

Aver. # errors (n=5e4) 0.02 0.65 0.95 0.45 0.49 1.35 4.19 8.9 15.46 19.92 18.99
Aver. # errors (n=10e4) 0.00 0.45 0.36 0.21 0.13 0.43 0.38 0.55 1.91 1.67 2.37
Aver. # errors (n=15e4) 0.00 0.34 0.47 0.00 0.02 0.13 0.13 0.31 0.39 0.59 1.77

moderate w.r.t. the number of observations.

7.5.2 Sparse structure of extremes (wave data)

Our goal is here to verify that the two expected phenomena mentioned in the introduction,
1- sparse dependence structure of extremes (small number of sub-cones with non zero mass),
2- low dimension of the sub-cones with non-zero mass, do occur with real data. We consider
wave directions data provided by Shell, which consist of 58585 measurements Di, i ≤ 58595
of wave directions between 0◦ and 360◦ at 50 different locations (buoys in North sea). The
dimension is thus 50. The angle 90◦ being fairly rare, we work with data obtained as Xj

i =

1/(10−10 + |90 − Dj
i |), where Dj

i is the wave direction at buoy j, time i. Thus, Dj
i ’s close

to 90 correspond to extreme Xj
i ’s. Results in Table 7.2 show that the number of sub-cones

Cα identified by Algorithm 3 is indeed small compared to the total number of sub-cones (250-
1). (Phenomenon 1 in the introduction section). Further, the dimension of these sub-cones
is essentially moderate (Phenomenon 2): respectively 93%, 98.6% and 99.6% of the mass is
affected to sub-cones of dimension no greater than 10, 15 and 20 respectively (to be compared
with d = 50). Histograms displaying the mass repartition produced by Algorithm 3 are given
in Fig. 7.5.

FIGURE 7.5: sub-cone dimensions of wave data

7.5.3 Application to Anomaly Detection on real-world data sets

The main purpose of Algorithm 3 is to build a ‘normal profile’ for extreme data, so as to dis-
tinguish between normal and ab-normal extremes. In this section we evaluate its performance
and compare it with that of a standard anomaly detection algorithm, the Isolation Forest (iFor-
est) algorithm, which we chose in view of its established high performance (Liu et al. (2008)).
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TABLE 7.2: Total number of sub-cones of wave data

non-extreme data extreme data

nb of sub-cones with mass > 0 (p = 0) 3413 858
idem after thresholding (p = 0.1) 2 64
idem after thresholding (p = 0.2) 1 18

The two algorithms are trained and tested on the same datasets, the test set being restricted to
an extreme region. Five reference anomaly detection datasets are considered: shuttle, forest-
cover, http, SF and SA 1. The experiments are performed in a novelty detection framework (the
training set consists of normal data).

The shuttle dataset is the fusion of the training and testing datasets available in the UCI repos-
itory Lichman (2013). The data have 9 numerical attributes, the first one being time. Labels
from 7 different classes are also available. Class 1 instances are considered as normal, the
others as anomalies. We use instances from all different classes but class 4, which yields an
anomaly ratio (class 1) of 7.17%.

In the forestcover data, also available at UCI repository (Lichman (2013)), the normal data
are the instances from class 2 while instances from class 4 are anomalies, other classes are
omitted, so that the anomaly ratio for this dataset is 0.9%.

The last three datasets belong to the KDD Cup ’99 dataset (KDDCup (1999), Tavallaee et al.
(2009)), produced by processing the tcpdump portions of the 1998 DARPA Intrusion Detection
System (IDS) Evaluation dataset, created by MIT Lincoln Lab Lippmann et al. (2000). The
artificial data was generated using a closed network and a wide variety of hand-injected attacks
(anomalies) to produce a large number of different types of attack with normal activity in
the background. Since the original demonstrative purpose of the dataset concerns supervised
anomaly detection, the anomaly rate is very high (80%), which is unrealistic in practice, and
inappropriate for evaluating the performance on realistic data. We thus take standard pre-
processing steps in order to work with smaller anomaly rates. For datasets SF and http we
proceed as described in Yamanishi et al. (2000): SF is obtained by picking up the data with
positive logged-in attribute, and focusing on the intrusion attack, which gives an anomaly
proportion of 0.48%. The dataset http is a subset of SF corresponding to a third feature equal
to ’http’. Finally, the SA dataset is obtained as in Eskin et al. (2002) by selecting all the normal
data, together with a small proportion (1%) of anomalies.

Table 7.3 summarizes the characteristics of these datasets. The thresholding parameter p is
fixed to 0.1, the averaged mass of the non-empty sub-cones, while the parameters (k, ǫ) are
standardly chosen as (n1/2, 0.01). The extreme region on which the evaluation step is per-
formed is chosen as {x : ‖T (x)‖ >

√
n}, where n is the training set’s sample size. The ROC

and PR curves are computed using only observations in the extreme region. This provides a
precise evaluation of the two anomaly detection methods on extreme data. For each of them,
20 experiments on random training and testing datasets are performed, yielding averaged ROC
and Precision-Recall curves whose AUC are presented in Table 7.4. DAMEX significantly
improves the performance (both in term of precision and of ROC curves) in extreme regions
for each dataset, as illustrated in figures 7.6 and 7.7.

In Table 7.5, we repeat the same experiments but with ǫ = 0.1. This yields the same strong
performance of DAMEX, excepting for SF (see Figure 7.8). Generally, to large ǫ may yield

1These datasets are available for instance on http://scikit-learn.org/dev/
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over-estimated M̂(α) for low-dimensional faces α. Such a performance gap between ǫ = 0.01
and ǫ = 0.1 can also be explained by the fact that anomalies may form a cluster which is
wrongly include in some over-estimated ‘normal’ sub-cone, when ǫ is too large. Such singular
anomaly structure would also explain the counter performance of iForest on this dataset.

We also point out that for very small values of epsilon (ǫ ≤ 0.001), the performance of
DAMEX significantly decreases on these datasets. With such a small ǫ, most observations
belong to the central cone (the one of dimension d) which is widely over-estimated, while the
other cones are under-estimated.

The only case were using very small ǫ should be useful, is when the asymptotic behaviour is
clearly reached at level k (usually for very large threshold n/k, e.g. k = n1/3), or in the specific
case where anomalies clearly concentrate in low dimensional sub-cones: The use of a small
ǫ precisely allows to assign a high abnormality score to these sub-cones (under-estimation of
the asymptotic mass), which yields better performances.

TABLE 7.3: Datasets characteristics

shuttle forestcover SA SF http

Samples total 85849 286048 976158 699691 619052
Number of features 9 54 41 4 3
Percentage of anomalies 7.17 0.96 0.35 0.48 0.39

TABLE 7.4: Results on extreme regions with standard parameters (k, ǫ) = (n1/2, 0.01)

Dataset iForest DAMEX

AUC ROC AUC PR AUC ROC AUC PR
shuttle 0.957 0.987 0.988 0.996

forestcover 0.667 0.201 0.976 0.805

http 0.561 0.321 0.981 0.742

SF 0.134 0.189 0.988 0.973

SA 0.932 0.625 0.945 0.818

TABLE 7.5: Results on extreme regions with lower ǫ = 0.1

Dataset iForest DAMEX

AUC ROC AUC PR AUC ROC AUC PR
shuttle 0.957 0.987 0.980 0.995

forestcover 0.667 0.201 0.984 0.852

http 0.561 0.321 0.971 0.639

SF 0.134 0.189 0.101 0.211

SA 0.932 0.625 0.964 0.848

Considering the significant performance improvements on extreme data, DAMEX may be
combined with any standard anomaly detection algorithm to handle extreme and non-extreme
data. This would improve the global performance of the chosen standard algorithm, and in
particular decrease the false alarm rate (increase the slope of the ROC curve’s tangents near
the origin). This combination can be done by splitting the input space between an extreme
region and a non-extreme one, then using Algorithm 3 to treat new observations that appear
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FIGURE 7.6: shuttle, default parameters

FIGURE 7.7: SF dataset, default parameters

in the extreme region, and the standard algorithm to deal with those which appear in the non-
extreme region.

7.6 Conclusion

The contribution of this chapter is twofold. First, it brings advances in multivariate EVT by de-
signing a statistical method that possibly exhibits a sparsity pattern in the dependence structure
of extremes, while deriving non-asymptotic bounds to assess the accuracy of the estimation
procedure. Our method is intended to be used as a preprocessing step to scale up multivariate
extreme values modeling to high dimensional settings, which is currently one of the major
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FIGURE 7.8: SF dataset, larger ǫ

FIGURE 7.9: SA dataset, default parameters

challenges in multivariate EVT. Since the asymptotic bias (bias(α, n, k, ǫ) in eq. (7.37)) ap-
pears as a separate term in the bound established, no second order assumption is required.
One possible line of further research would be to make such an assumption (i.e. to assume that
the bias itself is regularly varying), in order to choose ǫ in an adaptive way with respect to k
and n (see Remark 7.16). This might also open up the possibility of de-biasing the estima-
tion procedure (Fougeres et al. (2015), Beirlant et al. (2016)). As a second contribution, this
work extends the applicability of multivariate EVT to the field of anomaly detection: a multi-
variate EVT-based algorithm which scores extreme observations according to their degree of
abnormality is proposed. Due to its moderate complexity –of order dn log n– this algorithm
is suitable for the treatment of real word large-scale learning problems, and experimental re-
sults reveal a significantly increased performance on extreme regions compared with standard
anomaly detection approaches.
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FIGURE 7.10: forestcover dataset, default parameters

FIGURE 7.11: http dataset, default parameters

7.7 Technical proofs

7.7.1 Proof of Lemma 7.5

For n vectors v1, . . . ,vn in Rd, let us denote by rank(vji ) the rank of vji among vj1, . . . , v
j
n,

that is rank(vji ) =
∑n

k=1 1{vjk≤v
j
i }

, so that F̂j(X
j
i ) = (rank(Xj

i ) − 1)/n. For the first
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equivalence, notice that V̂ j
i = 1/Û j

i . For the others, we have both at the same time:

V̂ j
i ≥ n

k
xj ⇔ 1− rank(Xj

i )− 1

n
≤ k

n
x−1j

⇔ rank(Xj
i ) ≥ n− kx−1j + 1

⇔ rank(Xj
i ) ≥ n− ⌊kx−1j ⌋+ 1

⇔ Xj
i ≥ Xj

(n−⌊kx−1
j ⌋+1)

,

and

Xj
i ≥ Xj

(n−⌊kx−1
j ⌋+1)

⇔ rank(Xj
i ) ≥ n− ⌊kx−1j ⌋+ 1

⇔ rank(Fj(X
j
i )) ≥ n− ⌊kx−1j ⌋+ 1 (with probability one)

⇔ rank(1− Fj(X
j
i )) ≤ ⌊kx−1j ⌋

⇔ U j
i ≤ U j

(⌊kx−1
j ⌋)

.

7.7.2 Proof of Lemma 7.6

First, recall that gα,β(x, z) = µ
(
R(x−1, z−1, α, β)

)
, see (7.29). Denote by π the transforma-

tion to pseudo-polar coordinates introduced in Section 7.2,

π : [0,∞]d \ {0} → (0,∞]× Sd−1
∞

v 7→ (r,θ) = (‖v‖∞, ‖v‖−1∞ v).

Then, we have d(µ ◦ π−1) = dr
r2
dΦ on (0,∞]× Sd−1

∞ . This classical result from EVT comes
from the fact that, for r0 > 0 and B ⊂ Sd−1

∞ , µ ◦ π−1{r ≥ r0,θ ∈ B} = r−10 Φ(B), see (7.5).
Then

gα,β(x, z) = µ ◦ π−1
{
(r,θ) : ∀i ∈ α, rθi ≥ x−1i ; ∀j ∈ β, rθj < z−1j

}

= µ ◦ π−1
{
(r,θ) : r ≥

∨

i∈α
(θixi)

−1 ; r <
∧

j∈β
(θjzj)

−1
}

=

∫

θ∈Sd−1
∞

∫

r>0
1r≥∨i∈α(θixi)−1 1r<

∧
j∈β(θjzj)

−1

dr

r2
dΦ(θ)

=

∫

θ∈Sd−1
∞



(∨

i∈α
(θixi)

−1
)−1

−
( ∧

j∈β
(θjzj)

−1
)−1




+

dΦ(θ)

=

∫

θ∈Sd−1
∞


∧

i∈α
θixi −

∨

j∈β
θjzj




+

dΦ(θ),

which proves the first assertion. To prove the Lipschitz property, notice first that, for any finite
sequence of real numbers c and d, maxi ci−maxi di ≤ maxi(ci−di) and mini ci−mini di ≤
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maxi(ci − di). Thus for every x, z ∈ [0,∞]d \ {∞} and θ ∈ Sd−1
∞ :


∧

j∈α
θjxj −

∨

j∈β
θjzj




+

−


∧

j∈α
θjx
′
j −

∨

j∈β
θjz
′
j




+

≤




∧

j∈α
θjxj −

∨

j∈β
θjzj


−


∧

j∈α
θjx
′
j −

∨

j∈β
θjz
′
j





+

≤


∧

j∈α
θjxj −

∧

j∈α
θjx
′
j +

∨

j∈β
θjz
′
j −

∨

j∈β
θjzj



+

≤
[
max
j∈α

(θjxj − θjx
′
j) + max

j∈β
(θjz

′
j − θjzj)

]

+

≤ max
j∈α

θj |xj − x′j | + max
j∈β

θj |z′j − zj |

Hence,

|gα,β(x, z)− gα,β(x
′, z′)|

≤
∫

Sd−1
∞

(
max
j∈α

θj |xj − x′j | + max
j∈β

θj |z′j − zj |
)
dΦ(θ) .

Now, by (7.6) we have:
∫

Sd−1
∞

max
j∈α

θj |xj − x′j | dΦ(θ) = µ([0, x̃−1]c)

with x̃ defined as x̃j = |xj − x′j | for j ∈ α, and 0 elsewhere. It suffices then to write:

µ([0, x̃−1]c) = µ({y, ∃j ∈ α, yj ≥ |xj − x′j |−1})
≤
∑

j∈α
µ({y, yj ≥ |xj − x′j |−1})

≤
∑

j∈α
|xj − x′j | .

Similarly,
∫
Sd−1
∞

maxj∈β θj |z′j − zj | dΦ(θ) ≤ ∑
j∈β |zj − z′j |.

7.7.3 Proof of Proposition 7.8

The starting point is inequality (9) on p.7 in Goix et al. (2015b) which bounds the deviation
of the empirical measure on extreme regions. Let Cn( · ) = 1

n

∑n
i=1 1{Zi∈ · } and C(x) =

P(Z ∈ · ) be the empirical and true measures associated with a n-sample Z1, . . . ,Zd of i .i .d .
realizations of a random vector Z = (Z1, . . . , Zd) with uniform margins on [0, 1]. Then for
any real number δ ≥ e−k, with probability greater than 1− δ,

sup
0≤x≤T

n

k

∣∣∣∣Cn(
k

n
[x,∞[c)− C(k

n
[x,∞[c)

∣∣∣∣ ≤ Cd

√
T

k
log

1

δ
. (7.43)

Recall that with the above notations, 0 ≤ x ≤ T means 0 ≤ xj ≤ T for every j. The proof of
Proposition 7.8 follows the same lines as in Goix et al. (2015b). The cornerstone concentration
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inequality (7.43) has to be replaced with

max
α,β

sup
0≤x,z≤T
∃j∈α,xj≤T ′

n

k

∣∣∣∣Cn
(
k

n
R(x−1, z−1, α, β)−1

)
− C

(
k

n
R(x−1, z−1, α, β)−1

)∣∣∣∣

≤ Cd

√
dT ′

k
log

1

δ
. (7.44)

Remark 7.19. Inequality (7.44) is here written in its full generality, namely with a separate
constant T ′ possibly smaller than T . If T ′ < T , we then have a smaller bound (typically, we
may use T = 1/ǫ and T ′ = 1). However, we only use (7.44) with T = T ′ in the analysis
below, since the smaller bounds in T ′ obtained (on Λ(n) in (7.47)) would be diluted (by Υ(n)
in (7.47)).

Proof of (7.44). Recall that for notational convenience we write ‘α, β’ for ‘α non-empty sub-
set of {1, . . . , d} and β subset of {1, . . . , d}’. The key is to apply Theorem 1 in Goix et al.
(2015b), with a VC-class which fits our purposes. Namely, consider

A = AT,T ′ =
⋃

α,β

AT,T ′,α,β with

AT,T ′,α,β =
k

n

{
R(x−1, z−1, α, β)−1 : x, z ∈ Rd, 0 ≤ x, z ≤ T,

∃j ∈ α, xj ≤ T ′
}
,

for T, T ′ > 0 and α, β ⊂ {1, . . . , d}, α 6= ∅. A has VC-dimension VA = d, as the one
considered in Goix et al. (2015b). Recall in view of (7.26) that

R(x−1, z−1, α, β)−1 =
{
y ∈ [0,∞]d, yj ≤ xj for j ∈ α,

yj > zj for j ∈ β
}

= [a,b],

with a and b defined by aj =

{
0 for j ∈ α

zj for j ∈ β
and bj =

{
xj for j ∈ α

∞ for j ∈ β
. Since we have

∀A ∈ A, A ⊂ [ knT
′, ∞[c, the probability for a r.v. Z with uniform margins in [0, 1] to be in

the union class A =
⋃

A∈AA is P(Z ∈ A) ≤ P(Z ∈ [ knT
′, ∞[c) ≤ ∑d

j=1 P(Z
j ≤ k

nT
′) ≤

k
ndT

′. Inequality (7.44) is thus a direct consequence of Theorem 1 in Goix et al. (2015b).

Define now the empirical version F̃n,α,β of F̃α,β (introduced in (7.28)) as

F̃n,α,β(x, z) =
1

n

n∑

i=1

1{Uj
i ≤xj for j∈α and Uj

i >zj for j∈β} , (7.45)

so that n
k F̃n,α,β(

k
nx,

k
nz) = 1

k

∑n
i=1 1{Uj

i ≤ k
n
xj for j∈α and Uj

i >
k
n
zj for j∈β}. Notice that the

U j
i ’s are not observable (since Fj is unknown). In fact, F̃n,α,β will be used as a substitute

for gn,α,β (defined in (7.30)) allowing to handle uniform variables. This is illustrated by the
following lemmas.
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Lemma 7.20 (Link between gn,α,β and F̃n,α,β). The empirical version of F̃α,β and that of gα,β
are related via

gn,α,β(x, z) =
n

k
F̃n,α,β

((
U j
(⌊kxj⌋)

)
j∈α

,
(
U j
(⌊kzj⌋)

)
j∈β

)
,

Proof. Considering the definition in (7.45) and (7.31), both sides are equal to
µn(R(x−1, z−1, α, β)).

Lemma 7.21 (Uniform bound on F̃n,α,β’s deviations). For any finite T > 0, and δ ≥ e−k,
with probability at least 1− δ, the deviation of F̃n,α,β from F̃α,β is uniformly bounded:

max
α,β

sup
0≤x,z≤T

∣∣∣∣
n

k
F̃n,α,β(

k

n
x,

k

n
z)− n

k
F̃α,β(

k

n
x,

k

n
z)

∣∣∣∣ ≤ Cd

√
T

k
log

1

δ
.

Proof. Notice that

sup
0≤x,z≤T

∣∣∣∣
n

k
F̃n,α,β(

k

n
x,

k

n
z)− n

k
F̃α,β(

k

n
x,

k

n
z)

∣∣∣∣

= sup
0≤x,z≤T

n

k

∣∣∣∣∣
1

n

n∑

i=1

1
Ui∈ k

n
R(x−1,z−1,α, β)−1 − P

[
U ∈ k

n
R(x−1, z−1, α, β)−1

]∣∣∣∣∣ ,

and apply inequality (7.44) with T ′ = T .

Remark 7.22. Note that the following stronger inequality holds true, when using (7.44) in full
generality, i.e. with T ′ < T . For any finite T, T ′ > 0, and δ ≥ e−k, with probability at least
1− δ,

max
α,β

sup
0≤x,z≤T
∃j∈α,xj≤T ′

∣∣∣∣
n

k
F̃n,α,β(

k

n
x,

k

n
z)− n

k
F̃α,β(

k

n
x,

k

n
z)

∣∣∣∣ ≤ Cd

√
T ′

k
log

1

δ
.

The following lemma is stated and proved in Goix et al. (2015b).

Lemma 7.23 (Bound on the order statistics of U). Let δ ≥ e−k. For any finite positive number
T > 0 such that T ≥ 7/2((log d)/k + 1), we have with probability greater than 1− δ,

∀ 1 ≤ j ≤ d,
n

k
U j
(⌊kT ⌋) ≤ 2T , (7.46)

and with probability greater than 1− (d+ 1)δ,

max
1≤j≤d

sup
0≤xj≤T

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣ ≤ C

√
T

k
log

1

δ
.
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We may now proceed with the proof of Proposition 7.8. Using Lemma 7.20, we may write:

max
α,β

sup
0≤x,z≤T

|gn,α,β(x, z)− gα,β(x, z)|

= max
α,β

sup
0≤x,z≤T

∣∣∣∣
n

k
F̃n,α,β

((
U j
(⌊kxj⌋)

)
j∈α

,
(
U j
(⌊kzj⌋)

)
j∈β

)
− gα,β(x, z)

∣∣∣∣

≤ Λ(n) + Ξ(n) + Υ(n) . (7.47)

with:

Λ(n) = max
α,β

sup
0≤x,z≤T

∣∣∣∣
n

k
F̃n,α,β

((
U j
(⌊kxj⌋)

)
j∈α

,
(
U j
(⌊kzj⌋)

)
j∈β

)

− n

k
F̃α,β

((
U j
(⌊kxj⌋)

)
j∈α

,
(
U j
(⌊kzj⌋)

)
j∈β

) ∣∣∣∣

Ξ(n) = max
α,β

sup
0≤x,z≤T

∣∣∣∣
n

k
F̃α,β

((
U j
(⌊kxj⌋)

)
j∈α

,
(
U j
(⌊kzj⌋)

)
j∈β

)

− gα,β

((n
k
U j
(⌊kxj⌋)

)
j∈α

,
(n
k
U j
(⌊kzj⌋)

)
j∈β

) ∣∣∣∣

Υ(n) = max
α,β

sup
0≤x,z≤T

∣∣∣∣gα,β
((n

k
U j
(⌊kxj⌋)

)
j∈α

,
(n
k
U j
(⌊kzj⌋)

)
j∈β

)
− gα,β(x, z)

∣∣∣∣ .

Now, considering (7.46) we have with probability greater than 1− δ that for every 1 ≤ j ≤ d,
U j
(⌊kT ⌋) ≤ 2T k

n , so that

Λ(n) ≤ max
α,β

sup
0≤x,z≤2T

∣∣∣∣
n

k
F̃n,α,β

(
k

n
x,

k

n
z

)
− n

k
F̃α,β

(
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n
x,

k

n
z

)∣∣∣∣ .

Thus by Lemma 7.21, with probability at least 1− 2δ,

Λ(n) ≤ Cd

√
2T

k
log

1

δ
.

Concerning Υ(n), we have the following decomposition:

Υ(n) ≤ max
α,β

sup
0≤x,z≤T

∣∣∣∣gα,β
(
n

k

(
U j
(⌊kxj⌋)

)
j∈α

,
n

k

(
U j
(⌊kzj⌋)

)
j∈β

)

− gα,β

((⌊kxj⌋
k

)

j∈α
,

(⌊kzj⌋
k

)

j∈β

)∣∣∣∣

+ max
α,β

sup
0≤x,z≤T

∣∣∣∣∣gα,β
((⌊kxj⌋

k

)

j∈α
,

(⌊kzj⌋
k

)

j∈β

)
− gα,β(x, z)

∣∣∣∣∣
=: Υ1(n) + Υ2(n) .

The inequality in Lemma 7.6 allows us to bound the first term Υ1(n):

Υ1(n) ≤ Cmax
α,β

sup
0≤x,z≤T

∑

j∈α

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)

∣∣∣∣+
∑

j∈β
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⌊kzj⌋
k

− n

k
U j
(⌊kzj⌋)
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≤ 2C sup
0≤x≤T

∑

1≤j≤d

∣∣∣∣
⌊kxj⌋
k

− n

k
U j
(⌊kxj⌋)
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so that by Lemma 7.23, with probability greater than 1− (d+ 1)δ:

Υ1(n) ≤ Cd

√
2T

k
log

1

δ
.

Similarly,

Υ2(n) ≤ 2C sup
0≤x≤T

∑

1≤j≤d

∣∣∣∣
⌊kxj⌋
k

− xj

∣∣∣∣ ≤ C
2d

k
.

Finally we get, for every n > 0, with probability at least 1− (d+ 3)δ,

max
α,β

sup
0≤x,z≤T

|gn,α,β(x, z)− gα,β(x, z)| ≤ Λ(n) + Υ1(n) + Υ2(n) + Ξ(n)

≤ Cd

√
2T

k
log

1

δ
+

2d

k
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α,β
sup

0≤x,z≤2T

∣∣∣∣
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n
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n
z)− gα,β(x, z)
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≤ C ′d

√
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k
log

1

δ
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sup

0≤x,z≤2T

∣∣∣∣
n

k
F̃α,β(

k

n
x,

k

n
z)− gα,β(x, z)

∣∣∣∣ .

Remark 7.24. (BIAS TERM) It is classical (see Qi (1997) p.174 for details) to extend the simple
convergence (7.27) to the uniform version on [0, T ]d. It suffices to subdivide [0, T ]d and to use
the monotonicity in each dimension coordinate of gα,β and F̃α,β . Thus,

sup
0≤x,z≤2T

∣∣∣∣
n

k
F̃α,β(

k

n
x,

k

n
z)− gα,β(x, z)

∣∣∣∣→ 0

for every α and β. Note also that by taking a maximum on a finite class we have the conver-
gence of the maximum uniform bias to 0:

max
α,β

sup
0≤x,z≤2T

∣∣∣∣
n

k
F̃α,β(

k

n
x,

k

n
z)− gα,β(x, z)

∣∣∣∣→ 0. (7.48)

7.7.4 Proof of Lemma 7.10

First note that as the Ωβ’s form a partition of the simplex Sd−1
∞ and that Ωǫ,ǫ′

α ∩Ωβ = ∅ as soon
as α 6⊂ β, we have

Ωǫ,ǫ′
α =

⊔

β

Ωǫ,ǫ′
α ∩ Ωβ =

⊔

β⊃α
Ωǫ,ǫ′
α ∩ Ωβ .

Let us recall that as stated in Lemma 7.3), Φ is concentrated on the (disjoint) edges

Ωα,i0 = {x : ‖x‖∞ = 1, xi0 = 1, 0 < xi < 1 for i ∈ α \ {i0}
xi = 0 for i /∈ α }

and that the restriction Φα,i0 of Φ to Ωα,i0 is absolutely continuous w.r.t. the Lebesgue measure
dxα\i0 on the cube’s edges, whenever |α| ≥ 2. By (7.15) we have, for every β ⊃ α,

Φ(Ωǫ,ǫ′
α ∩ Ωβ) =

∑

i0∈β

∫

Ωǫ,ǫ′
α ∩Ωβ,i0

dΦβ,i0

dxβ\i0
(x) dxβ\i0

Φ(Ωα) =
∑

i0∈α

∫

Ωα,i0

dΦα,i0

dxα\i0
(x) dxα\i0 .
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Thus,

Φ(Ωǫ,ǫ′
α )− Φ(Ωα) =

∑

β⊃α

∑

i0∈β

∫

Ωǫ,ǫ′
α ∩Ωβ,i0

dΦβ,i0

dxβ\i0
(x) dxβ\i0

−
∑

i0∈α

∫

Ωα,i0

dΦα,i0

dxα\i0
(x) dxα\i0

=
∑

β)α

∑

i0∈β

∫

Ωǫ,ǫ′
α ∩Ωβ,i0

dΦβ,i0

dxβ\i0
(x) dxβ\i0

−
∑

i0∈α

∫

Ωα,i0
\(Ωǫ,ǫ′

α ∩Ωα,i0
)

dΦα,i0

dxα\i0
(x) dxα\i0 ,

so that by (7.16),

|Φ(Ωǫ,ǫ′
α )− Φ(Ωα)| ≤

∑

β)α

Mβ

∑

i0∈β

∫

Ωǫ,ǫ′
α ∩Ωβ,i0

dxβ\i0 (7.49)

+ Mα

∑

i0∈α

∫

Ωα,i0
\(Ωǫ,ǫ′

α ∩Ωα,i0
)
dxα\i0 .

Without loss of generality we may assume that α = {1, ...,K} with K ≤ d. Then, for β ) α,∫
Ωǫ,ǫ′

α ∩Ωβ,i0

dxβ\i0 is smaller than (ǫ′)|β|−|α| and is null as soon as i0 ∈ β \ α. To see this,

assume for instance that β = {1, ..., P} with P > K. Then

Ωǫ,ǫ′
α ∩ Ωβ,i0 = {ǫ < x1, ..., xK ≤ 1, xK+1, ..., xP ≤ ǫ′, xi0 = 1,

xP+1 = ... = xd = 0 }

which is empty if i0 ≥ K + 1 (i.e. i0 ∈ β \ α) and which fulfills if i0 ≤ K

∫

Ωǫ,ǫ′
α ∩Ωβ,i0

dxβ\i0 ≤ (ǫ′)P−K .

The first term in (7.49) is then bounded by
∑

β)αMβ |α|(ǫ′)|β|−|α|. Now, concerning the

second term in (7.49), Ωǫ,ǫ′
α ∩ Ωα,i0 = {ǫ < x1, ..., xK ≤ 1, xi0 = 1, xK+1, ..., xd = 0} and

then

Ωα,i0 \ (Ωǫ,ǫ′
α ∩ Ωα,i0) =

⋃

l=1,...,K

Ωα,i0 ∩ {xl ≤ ǫ},

so that
∫
Ωα,i0

\(Ωǫ,ǫ′
α ∩Ωα,i0

)
dxα\i0 ≤ Kǫ = |α|ǫ. The second term in (7.49) is thus bounded

by M |α|2ǫ. Finally, (7.49) implies

|Φ(Ωǫ,ǫ′
α )− Φ(Ωα)| ≤ |α|

∑

β)α

Mβ(ǫ
′)|β|−|α| +M |α|2ǫ.

To conclude, observe that by Assumption 3,

∑

β)α

Mβ(ǫ
′)|β|−|α| ≤

∑

β)α

Mβ(ǫ
′) ≤ ǫ′

∑

|β|≥2
Mβ ≤ ǫ′M

The result is thus proved.
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7.7.5 Proof of Remark 7.14

Let us prove that Zn, conditionally to the event {‖ k
nV1‖∞ ≥ 1}, converges in law. Recall

that Zn is a (2d − 1)-vector defined by Zn(α) = 1 k
n
V1∈Rǫ

α
for all α ⊂ {1, . . . , d}, α 6=

∅. Let us denote 1α = (1j=α)j=1,...,2d−1 where we implicitly define the bijection between
P({1, . . . , d}) \ ∅ and {1, . . . , 2d − 1}. Since the Rǫ

α’s, α varying, form a partition of [0,1]c,
P(∃α,Zn = 1α | ‖ k

nV1‖∞ ≥ 1) = 1 and Zn = 1α ⇔ Zn(α) = 1 ⇔ k
nV1 ∈ Rǫ

α, so that

E
[
Φ(Zn)1‖ k

n
V1‖∞≥1

]
=
∑

α

Φ(1α)P(Zn(α) = 1).

Let Φ : R2d−1 → R+ be a measurable function. Then

E

[
Φ(Zn) | ‖

k

n
V1‖∞ ≥ 1

]
= P

[
‖k
n
V1‖∞ ≥ 1

]−1
E
[
Φ(Zn)1‖ k

n
V1‖∞≥1

]
.

Now, P
[
‖ k
nV1‖∞ ≥ 1

]
= k

nπn with πn → µ([0,1]c), so that

E

[
Φ(Zn) | ‖

k

n
V1‖∞ ≥ 1

]
= π−1n

n

k

(∑

α

Φ(1α)P(Zn(α) = 1)

)
.

Using n
kP [Zn(α) = 1] = n

kP
[
k
nV1 ∈ Rǫ

α

]
→ µ(Rǫ

α), we find that

E

[
Φ(Zn) | ‖

k

n
V1‖∞ ≥ 1

]
→
∑

α

Φ(1α)
µ(Rǫ

α)

µ([0,1]c)
,

which achieves the proof.
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CHAPTER 8
How to Evaluate the Quality of Anomaly Detection

Algorithms?

We recall that this is a contribution of heuristic nature and not yet supported by statistically
sound theoretical results. This ongoing work has not been published yet and will certainly be
completed in the near future, but we believe that it has its place in our manuscript, given the
convincing empirical experiments and the rationale behind the approach promoted we gave.

Abstract This chapter presents the details relative to the introducing section 1.5.1.
When sufficient labeled data are available, classical criteria based on Receiver Operating
Characteristic (ROC) or Precision-Recall (PR) curves can be used to compare the perfor-
mance of unsupervised anomaly detection algorithms. However, in many situations, few or
no data are labeled. This calls for alternative criteria one can compute on non-labeled data.
In this work, two criteria that do not require labels are empirically shown to discriminate
accurately (w.r.t. ROC or PR based criteria) between algorithms. These criteria are based on
existing Excess-Mass (EM) and Mass-Volume (MV) curves, which generally cannot be well
estimated in large dimension. A methodology based on feature sub-sampling and aggregating
is also described and tested, extending the use of these criteria to high-dimensional datasets
and solving major drawbacks inherent to standard EM and MV curves.

Note: The material of this chapter is based on previous work published in Goix (2016) and on
the submitted work Goix & Thomas (2016).

8.1 Introduction

When labels are available, classical ways to evaluate the quality of an anomaly scoring function
are the ROC and PR curves. Unfortunately, most of the time, data come without any label. In
lots of industrial setups, labeling datasets calls for costly human expertise, while more and
more unlabeled data are available. A huge practical challenge is therefore to have access to
criteria able to discriminate between unsupervised algorithms without using any labels. In
this chapter, we formalize and justify the use of two such criteria designed for unsupervised
anomaly detection, and adapt them to large dimensional data. Strong empirical performance
demonstrates the relevance of our approach.

Anomaly detection (and depending on the application domain, outlier detection, novelty de-
tection, deviation detection, exception mining) generally consists in assuming that the dataset
under study contains a small number of anomalies, generated by distribution models that differ
from that generating the vast majority of the data. The usual assumption (in supervised learn-
ing) stipulating that the dataset contains structural information regarding all classes breaks
down (Roberts, 1999): the very small number of points representing the abnormal class does
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not allow to learn information about this class. Here and hereafter, the term ‘normal data’
does not refer to Gaussian distributed data, but to not abnormal ones, i.e. data belonging to
the above mentioned majority. This formulation motivates many statistical anomaly detection
methods, based on the underlying assumption that anomalies occur in low probability regions
of the data generating process. Classical parametric techniques (Barnett & Lewis, 1994; Eskin,
2000) assume that the normal data are generated by a distribution belonging to some specific
and a priori known parametric model. The most popular non-parametric approaches include
algorithms based on density (level set) estimation (Schölkopf et al., 2001; Scott & Nowak,
2006; Breunig et al., 2000), on dimensionality reduction (Shyu et al., 2003; Aggarwal & Yu,
2001) or on decision trees (Liu et al., 2008). One may refer to Hodge & Austin (2004); Chan-
dola et al. (2009); Patcha & Park (2007); Markou & Singh (2003) for overviews of current
research on anomaly detection.

It turns out that the overwhelming majority of anomaly detection algorithms return more than
a binary label, normal/abnormal. They first compute a scoring function, which is converted to
a binary prediction, typically by imposing some threshold based on its statistical distribution.

What is a scoring function? From a probabilistic point of view, there are different ways of
modeling normal and abnormal behaviors, which leads to different methodologies. One natural
probabilistic model is to assume two different generating processes for normal and abnormal
data. Normal data (resp. abnormal data) are generated according to some distribution F
(resp. G). The general underlying distribution is then a mixture of F and G. The goal is to
find out if a new observation x has been generated from F , or from G. The optimal way to
resolve this problem would be the likelihood ratio test, also called Neyman-Pearson test. If
(dF/dG)(x) > t with t > 0 some threshold, then x has been drawn from F . Otherwise, x
has been drawn from G. As anomalies are very rare, their structure cannot be observed in the
data, in particular their distribution G. It is common and convenient (Vert, 2006) to replace G
in the problem above by the Lebesgue measure, so that it boils down to estimating density level
sets of F . This setup is typically the one of the One-Class Support Vector Machine (OCSVM)
algorithm developed in Schölkopf et al. (2001), which extends the SVM methodology (Cortes
& Vapnik, 1995; Shawe-Taylor & Cristianini, 2004) to handle training using only positive
information. The underlying assumption is that we observe data in Rd from the normal class
only, with underlying distribution F and underlying density f : Rd → R. The goal is to
estimate density level sets ({x, f(x) > t})t>0 with t close to 0. In practice, such estimates are
represented by a scoring function: any measurable function s : Rd → R+ integrable w.r.t. the
Lebesgue measure Leb(.), whose level sets are estimates of the true density level sets. Any
scoring function defines a pre-order on Rd and thus a ranking on a set of new observations.
This ranking can be interpreted as a degree of abnormality, the lower s(x), the more abnormal
x.

How to know if a scoring function is good? How can we know if the pre-order induced by
a scoring function s is ‘close’ to that of f , or equivalently if these induced level sets are close
to those of f? The problem is to define this notion of proximity into a criterion C, optimal
scoring functions s∗ being then defined as those optimizing C. It turns out that for any strictly
increasing transform T : Im(f) → R, the level sets of T ◦ f are exactly those of f . Here and
hereafter, Im(f) denotes the image of the mapping f . For instance, 2f or f2 are perfect scoring
functions, just as f . Thus, we cannot simply consider a criterion based on the distance of s
to the true density, e.g. C(s) = ‖s − f‖. We seek for a similar criterion which is invariant
by increasing transformation of the output s. In other words, the criterion should be defined
in such a way that the collection of level sets of an optimal scoring function s∗(x) coincides
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with that related to f . Moreover, any increasing transform of the density should be optimal
regarding C.

In the literature, two functional criteria admissible with respect to these requirements have
been introduced: the Mass-Volume (MV) (Clémençon & Jakubowicz, 2013; Clémençon &
Robbiano, 2014) and the Excess-Mass (EM) (Goix et al., 2015c) curves. Formally, it allows
to consider CΦ(s) = ‖Φ(s) − Φ(f)‖ (instead of ‖s − f‖) with Φ : R → R+ verifying
Φ(T ◦ s) = Φ(s) for any scoring function s and increasing transform T . Here Φ(s) denotes
either the mass-volume curve MVs of s or its excess-mass curve EMs, which are defined
in the next section. While such quantities have originally been introduced to build scoring
functions via Empirical Risk Minimization (ERM), the MV-curve has been used recently for
the calibration of the One-Class SVM (Thomas et al., 2015). When used to attest the quality of
some scoring function, the volumes induced become unknown and must be estimated, which
is challenging in large dimension.

In this work, we define two numerical performance criteria based on MV and EM curves,
which are tested with respect to three classical anomaly detection algorithms. A wide range
on real labeled datasets are used in the benchmark. In addition, we propose a method based on
feature sub-sampling and aggregating. It allows to scale this methodology to high-dimensional
data which we use on the higher-dimensional datasets. We compare the results to ROC and PR
criteria, which use the data labels hidden to MV and EM curves.

This chapter is structured as follows. Section 8.2 introduces Excess-Mass and Mass-Volume
curves and defines associated numerical criteria. In Section 8.3, the feature sub-sampling
based methodology to extend their use to high dimension is described. Finally, experiments
on a wide range of real datasets are provided in Section 8.4.

8.2 Mass-Volume and Excess-Mass based criteria

We place ourselves in a probability space (Ω,F ,P). We observe n i .i .d . realizations
X1, . . . ,Xn of a random variable X : Ω → Rd representing the normal behavior, with c.d.f. F
and density f w.r.t. the Lebesgue measure on Rd. We denote by S the set of all scoring func-
tions, namely any measurable function s : Rd → R+ integrable w.r.t. the Lebesgue measure.
We work under the assumptions that the density f has no flat parts and is bounded. Excess-
Mass and Mass-Volume curves are here introduced in a different way they originally were
in Clémençon & Jakubowicz (2013); Goix et al. (2015c). We use equivalent definitions for
them since the original definitions were more adapted to the ERM paradigm than to the issues
addressed here.

8.2.1 Preliminaries

Let s ∈ S be a scoring function. In this context (Clémençon & Jakubowicz, 2013; Goix et al.,
2015c), the mass-volume (MV) and the excess-mass (EM) curves of s can be written as

∀α ∈ (0, 1), MVs(α) = inf
u≥0

Leb(s ≥ u) s.t. P(s(X) ≥ u) ≥ α (8.1)

∀t > 0, EMs(t) = sup
u≥0

{P(s(X) ≥ u) − tLeb(s ≥ u)} (8.2)
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The optimal curves are MV ∗ = MVf = MVT◦f and EM∗ = EMf = EMT◦f for any
increasing transform T : Im(f) → R. It can be proven (Clémençon & Jakubowicz, 2013;
Goix et al., 2015c) that for any scoring function s, MV ∗(α) ≤ MVs(α) for all α ∈ (0, 1)
and EM∗(t) ≥ EMs(t) for all t > 0. Also, MV ∗(α) is the optimal value of the constrained
minimization problem

min
Γ borelian

Leb(Γ) s.t. P(X ∈ Γ) ≥ α. (8.3)

The minimization problem (8.3) has a unique solution Γ∗α of mass α exactly, referred to as
minimum volume set (Polonik, 1997): MV ∗(α) = Leb(Γ∗α) and P(X ∈ Γ∗α) = α.

Similarly, the optimal EM curve is linked with the notion of density excess-mass (as intro-
duced in the seminal contribution Polonik (1995)). The main idea is to consider a Lagrangian
formulation of the constrained minimization problem obtained by exchanging constraint and
objective in (8.3),

EM∗(t) := max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)}. (8.4)

Figure 8.1 compares the mass-volume and excess-mass approaches.

FIGURE 8.1: Comparison between MV ∗(α) and EM∗(t)
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8.2.2 Numerical unsupervised criteria

The main advantage of EM compared to MV is that the area under its curve is finite, even
if the support of the distribution F is not. As curves cannot be trivially compared, con-
sider the L1-norm ‖.‖L1(I) with I ⊂ R an interval. As MV ∗ = MVf is below MVs

point-wise, argmins ‖MVs − MV ∗‖L1(I) = argmin ‖MVs‖L1(I). We thus define the cri-
terion CMV (s) = ‖MVs‖L1(IMV ), which is equivalent to consider ‖MVs − MV ∗‖L1(IMV )

as mentioned in the introduction. As we are interested in evaluating accuracy on large den-
sity level-sets, one natural interval IMV would be for instance [0.9, 1]. However, MV di-
verges at one when the support is infinite, so that we arbitrarily take IMV = [0.9, 0.999]. The
smaller is CMV (s), the better is the scoring function s. Similarly, we consider CEM (s) =
‖EMs‖L1(IEM ), this time considering IEM = [0, EM−1(0.9)], with EM−1s (0.9) := inf{t ≥
0, EMs(t) ≤ 0.9}, as EMs(0) is finite (equal to 1). We point out that such small val-
ues of t correspond to large level-sets. Also, we have observed that EM−1s (0.9) (as well as
EM−1f (0.9)) varies significantly depending on the dataset. Generally, for datasets in large
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dimension, it can be very small (in the experiments, smallest values are of order 10−7) as it is
of the same order of magnitude as the inverse of the total support volume.

As the distribution F of the normal data is generally unknown, mass-volume and excess-mass
curves must be estimated. Let s ∈ S and X1, . . . , Xn be an i.i.d. sample with common
distribution F and set

Pn(s ≥ t) =
1

n

n∑

i=1

1s(Xi)≥t.

The empirical MV and EM curves of s are then simply defined as empirical version of (8.1)
and (8.2),

M̂V s(α) = inf
u≥0

Leb(s ≥ u) s.t. Pn(s ≥ u) ≥ α (8.5)

ÊM s(t) = sup
u≥0

Pn(s ≥ u) − tLeb(s ≥ u) (8.6)

Note that in practice, the volume Leb(s ≥ u) is estimated using Monte-Carlo approximation,
which only applies to small dimensions. Finally, we obtain the empirical EM and MV based
performance criteria:

ĈEM (s) = ‖ÊM s‖L1(IEM ) IEM = [0, ÊM
−1

(0.9)], (8.7)

ĈMV (s) = ‖M̂V s‖L1(IMV ) IMV = [0.9, 0.999], (8.8)

Remark 8.1. (LINK WITH ROC CURVE) To evaluate unsupervised algorithms, it is common to
generate uniform outliers and then use the ROC curve approach. Up to identify the Lebesgue
measure of a set to its empirical version (i.e. the proportion of uniform point inside), this ap-
proach is equivalent to using the mass-volume curve (Clémençon & Robbiano, 2014). How-
ever, in the former approach, the volume estimation does not appear directly, so that the (po-
tentially huge) amount of uniform points needed to provide a good estimate of a volume is
often not respected, yielding optimistic performances.

8.3 Scaling with dimension

In this section we propose a methodology to scale the use of the excess-mass and mass-volume
criteria to large dimensional data. It consists in sub-sampling training and testing data along
features, thanks to a parameter d′ controlling the number of features randomly chosen for com-
puting the (EM or MV) score. Replacement is done after each draw of features F1, . . . , Fm.
A partial score ĈMV

k (resp. ĈEM
k ) is computed for each draw Fk using (8.7) (resp. (8.8)). The

final performance criteria are obtained by averaging these partial criteria along the different
draws of features. This methodology is described in Algorithm 4.

A drawback from this approach is that we do not evaluate combinations of more than d′ fea-
tures within the dependence structure. However, according to our experiments, this is enough
in most of the cases. Besides, we solve two major drawbacks inherent to mass-volume or
excess-mass criteria, which come from the Lebesgue reference measure:

• EM or MV performance criteria cannot be estimated in large dimension,

• EM or MV performance criteria cannot be compared when produced from spaces of
different dimensions, since reference measures of Rd and Rd+1 cannot be compared.
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Algorithm 4 Evaluate anomaly detection algorithms on high dimensional data

Inputs: anomaly detection algorithm A, data set X = (xji )1≤i≤n,1≤j≤d, feature sub-
sampling size d′, number of draws m.

for k = 1, . . . ,m do
randomly select a sub-group Fk of d′ features
compute the associated scoring function ŝk = A

(
(xji )1≤i≤n, j∈Fk

)

compute ĈEM
k = ‖ÊM ŝk‖L1(IEM ) using (8.7) or ĈMV

k = ‖M̂V ŝk‖L1(IMV ) using (8.8)
end for

Return performance criteria:

ĈEM
high_dim(A) =

1

m

m∑

k=1

ĈEM
k or ĈMV

high_dim(A) =
1

m

m∑

k=1

ĈMV
k .

Remark 8.2. (FEATURE IMPORTANCE) With standard MV and EM curves, the benefit of us-
ing or not some feature j in training cannot be evaluated, as it involves spaces of different
dimensions (d and d + 1). Solving the second drawback precisely allows to evaluate the im-
portance of features. By sub-sampling features, we can compare accuracies with or without
using feature j: when computing ĈMV

high_dim or ĈEM
high_dim using Algorithm 4, this is reflected in

the fact that j can (resp. cannot) be drawn.

Remark 8.3. (THEORETICAL GROUNDS) Criteria ĈMV
high_dim or ĈEM

high_dim do not evaluate a
specific scoring function s produced by some algorithm (on some dataset), but the algorithm
itself w.r.t. the dataset at stake. Indeed, these criteria proceed with the average of partial scoring
functions on sub-space of Rd. We have no theoretical guaranties that the final score does corre-
spond to some scoring function defined on Rd. In this work, we only show that from a practical
point of view, it is a useful and accurate methodology to compare algorithms performance on
large dimensional datasets.

Remark 8.4. (DEFAULT PARAMETERS) In our experiments, we arbitrarily chose m = 50 and
d′ = 5. This means that 50 draws of 5 features (with replacement after each draw) have
been done. Volume in spaces of dimension 5 have thus to be estimated (which is feasible
with Monte-Carlo), and 50 scoring functions (on random subspaces of dimension 5) have to
be computed by the algorithm we want to evaluate. The next section shows (empirically) that
these parameters achieve a good accuracy on the collection of datasets studied, the largest
dimension considered being 164.

8.4 Benchmarks

Does performance in term of EM/MV correspond to performance in term of ROC/PR?
Can we recover, on some fixed dataset, which algorithm is better than the others (according to
ROC/PR criteria) without using labels? In this section we study four different empirical eval-
uations (ROC, PR, EM, MV) of three classical state-of-the-art anomaly detection algorithms,
One-Class SVM (Schölkopf et al., 2001), Isolation Forest (Liu et al., 2008), and Local Outlier
Factor (LOF) algorithm (Breunig et al., 2000), on 12 well-known anomaly detection datasets.
Two criteria use labels (ROC and PR based criteria) and two do not (EM and MV based cri-
teria). For ROC and PR curves, we consider the area under the (full) curve (AUC). For the
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excess-mass curve EM(t) (resp. mass-volume curve), we consider the area under the curve
on the interval [0, EM−1(0.9)] (resp. [0.9, 0.999]) as described in Section 8.2.

8.4.1 Datasets description

TABLE 8.1: Original Datasets characteristics

nb of samples nb of features anomaly class

adult 48842 6 class ’> 50K’ (23.9%)
http 567498 3 attack (0.39%)
pima 768 8 pos (class 1) (34.9%)
smtp 95156 3 attack (0.03%)
wilt 4839 5 class ’w’ (diseased trees) (5.39%)
annthyroid 7200 6 classes 6= 3 (7.42%)
arrhythmia 452 164 classes 6= 1 (features 10-14 removed) (45.8%)
forestcover 286048 10 class 4 (vs. class 2 ) (0.96%)
ionosphere 351 32 bad (35.9%)
pendigits 10992 16 class 4 (10.4%)
shuttle 85849 9 classes 6= 1 (class 4 removed) (7.17%)
spambase 4601 57 spam (39.4%)

The characteristics of these reference datasets are summarized in Table 8.1. They are all avail-
able on the UCI repository (Lichman, 2013) and the preprocessing is done in a classical way.
We removed all non-continuous attributes as well as attributes taking less than 10 different val-
ues. The http and smtp datasets belong to the KDD Cup ’99 dataset (KDDCup, 1999; Tavallaee
et al., 2009), which consists of a wide variety of hand-injected attacks (anomalies) in a closed
network (normal background). They are classically obtained as described in Yamanishi et al.
(2000). These datasets are available on the scikit-learn library (Pedregosa et al., 2011). The
shuttle dataset is the fusion of the training and testing datasets available in the UCI repository.
As in Liu et al. (2008), we use instances from all different classes but class 4. In the forestcover
data, the normal data are the instances from class 2 while instances from class 4 are anoma-
lies (as in Liu et al. (2008)). The ionosphere dataset differentiates ‘good’ from ‘bad’ radars,
considered here as abnormal. A ‘good’ radar shows evidence of some type of structure in the
ionosphere. A ‘bad’ radar does not, its signal passing through the ionosphere. The spambase
dataset consists of spam or non-spam emails. The former constitute the abnormal class. The
annthyroid medical dataset on hypothyroidism contains one normal class and two abnormal
ones, which form the outlier set. The arrhythmia dataset reflects the presence and absence
(class 1) of cardiac arrhythmia. The number of attributes being large considering the sample
size, we removed attributes containing missing data. The pendigits dataset contains 10 classes
corresponding to the digits from 0 to 9, examples being handwriting samples. As in Schubert
et al. (2012), the abnormal data are chosen to be those from class 4. The pima dataset consists
of medical data on diabetes. Patients suffering from diabetes (positive class) were considered
outliers. The wild dataset involves detecting diseased trees in Quickbird imagery. Diseased
trees (class ‘w’) is the abnormal class. In the adult dataset, the goal is to predict whether
income exceeds $ 50K/year based on census data. Only the 6 continuous attributes are kept.
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8.4.2 Results

The experiments are performed both in a novelty detection framework (also named semi-
supervised framework, the training set consisting of normal data only) and in an unsupervised
framework (the training set is polluted by abnormal data). In the former case, we simply re-
moved anomalies from the training data, and EM and PR criteria are estimated using only
normal data. In the latter case, the anomaly rate is arbitrarily bounded to 10% max, and EM
and PR criteria are estimated with the same test data used for ROC and PR curves, without
using their labels.

TABLE 8.2: Results for the novelty detection setting. ROC, PR, EM, MV often do agree
on which algorithm is the best (in bold), which algorithm is the worse (underlined) on some
fixed datasets. When they do not agree, it is often because ROC and PR themselves do not,
meaning that the ranking is not clear.

Dataset iForest OCSVM LOF

ROC PR EM MV ROC PR EM MV ROC PR EM MV
adult 0.661 0.277 1.0e-04 7.5e01 0.642 0.206 2.9e-05 4.3e02 0.618 0.187 1.7e-05 9.0e02
http 0.994 0.192 1.3e-03 9.0 0.999 0.970 6.0e-03 2.6 0.946 0.035 8.0e-05 3.9e02
pima 0.727 0.182 5.0e-07 1.2e04 0.760 0.229 5.2e-07 1.3e04 0.705 0.155 3.2e-07 2.1e04
smtp 0.907 0.005 1.8e-04 9.4e01 0.852 0.522 1.2e-03 8.2 0.922 0.189 1.1e-03 5.8
wilt 0.491 0.045 4.7e-05 2.1e03 0.325 0.037 5.9e-05 4.5e02 0.698 0.088 2.1e-05 1.6e03

annthyroid 0.913 0.456 2.0e-04 2.6e02 0.699 0.237 6.3e-05 2.2e02 0.823 0.432 6.3e-05 1.5e03
arrhythmia 0.763 0.487 1.6e-04 9.4e01 0.736 0.449 1.1e-04 1.0e02 0.730 0.413 8.3e-05 1.6e02
forestcov. 0.863 0.046 3.9e-05 2.0e02 0.958 0.110 5.2e-05 1.2e02 0.990 0.792 3.5e-04 3.9e01
ionosphere 0.902 0.529 9.6e-05 7.5e01 0.977 0.898 1.3e-04 5.4e01 0.971 0.895 1.0e-04 7.0e01
pendigits 0.811 0.197 2.8e-04 2.6e01 0.606 0.112 2.7e-04 2.7e01 0.983 0.829 4.6e-04 1.7e01
shuttle 0.996 0.973 1.8e-05 5.7e03 0.992 0.924 3.2e-05 2.0e01 0.999 0.994 7.9e-06 2.0e06
spambase 0.824 0.371 9.5e-04 4.5e01 0.729 0.230 4.9e-04 1.1e03 0.754 0.173 2.2e-04 4.1e04

Recall that standard excess-mass and mass-volume performance criteria referring on the
Lebesgue measure, they require volume estimation. They only apply to continuous datasets,
of small dimension (d ≤ 8). The datasets verifying these requirements are http, smtp, pima,
wilt and adult. For the other datasets, we use the performance criteria ĈMV

high_dim and ĈEM
high_dim

computed with Algorithm 4. We arbitrarily chose m = 50 and d′ = 5, which means that 50
draws of 5 features, with replacement after each draw, are done. Other parameters have also
been tested but are not presented here. The default parameters proposed here are a compro-
mise between computational time and performance, in particular on the largest dimensional
datasets. The latter require a relatively large product m× d′, which is the maximal number of
different features that can be drawn.

Excess-Mass, Mass-volume, ROC and Precision-Recall curves AUCs are presented in Ta-
ble 8.2 for the novelty detection framework, and in Table 8.3 for the unsupervised framework.
The corresponding ROC and PR curves are available at the end of this chapter. Figure 8.2
shows excess-mass and mass-volume curves on the adult dataset in a novelty detection setting.
Corresponding figures for the other datasets are also available at the end of this chapter.

Results from Table 8.2 can be summarized as follows. Consider the 36 possible pairwise
comparisons between the three algorithms over the twelve datasets
{(

A1 on D, A2 on D
)
, A1, A2 ∈ {iForest, LOF, OCSVM}, D ∈ {adult, http, . . . , spambase}

}
.

(8.9)
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TABLE 8.3: Results for the unsupervised setting still remain good: one can see that ROC,
PR, EM, MV often do agree on which algorithm is the best (in bold), which algorithm is the
worse (underlined) on some fixed datasets. When they do not agree, it is often because ROC
and PR themselves do not, meaning that the ranking is not clear.

Dataset iForest OCSVM LOF

ROC PR EM MV ROC PR EM MV ROC PR EM MV
adult 0.644 0.234 6.6e-05 2.7e02 0.627 0.184 1.8e-05 5.6e02 0.545 0.098 7.4e-06 1.9e03
http 0.999 0.686 1.4e-03 2.2e01 0.994 0.207 5.7e-03 3.3 0.354 0.019 9.8e-05 3.9e02
pima 0.747 0.205 1.2e-06 1.2e04 0.742 0.211 6.0e-07 1.9e04 0.686 0.143 6.0e-07 3.2e04
smtp 0.902 0.004 2.7e-04 8.6e01 0.852 0.365 1.4e-03 7.7 0.912 0.057 1.1e-03 7.0
wilt 0.443 0.044 3.7e-05 2.2e03 0.318 0.036 3.9e-05 4.3e02 0.620 0.066 2.0e-05 8.9e02

annthyroid 0.820 0.309 6.9e-05 7.7e02 0.682 0.187 4.1e-05 3.1e02 0.724 0.175 1.6e-05 4.1e03
arrhythmia 0.740 0.416 8.4e-05 1.1e02 0.729 0.447 6.8e-05 1.2e02 0.729 0.409 5.6e-05 1.5e02
forestcov. 0.882 0.062 3.2e-05 2.3e02 0.951 0.095 4.4e-05 1.4e02 0.542 0.016 2.4e-04 4.6e01
ionosphere 0.895 0.543 7.4e-05 9.3e01 0.977 0.903 8.7e-05 7.7e01 0.969 0.884 6.9e-05 1.0e02
pendigits 0.463 0.077 2.7e-04 2.5e01 0.366 0.067 2.6e-04 2.8e01 0.504 0.089 4.5e-04 1.6e01
shuttle 0.997 0.979 7.1e-07 1.2e05 0.992 0.904 5.8e-06 1.7e02 0.526 0.116 7.1e-07 1.7e07
spambase 0.799 0.303 2.2e-04 3.5e01 0.714 0.214 1.5e-04 2.9e02 0.670 0.129 3.7e-05 2.7e04

FIGURE 8.2: MV and EM curves for adult dataset (novelty detection framework). Both in
terms of EM and MV curves, iForest is found to perform better than OCSVM, which is itself
found to perform better than LOF. Comparing to Table 8.2, ROC and PR AUCs give the same
ranking (iForest on adult ≻ OCSVM on adult ≻ LOF on adult). The 3 pairwise comparisons
(iForest on adult, LOF on adult), (OCSVM on adult, LOF on adult) and (OCSVM on adult,
iForest on adult) are then similarly ordered by EM, PR, MV and EM criteria.

For each dataset D, there are three possible pairs (iForest on D, LOF on D), (OCSVM on
D, LOF on D) and (OCSVM on D, iForest on D). Then the EM-score discriminates 28 of
them (78%) as ROC score does, and 29 (81%) of them as PR score does. Intuitively this can
be interpreted as follows. Choose randomly a dataset D among the twelve available, and two
algorithms A1, A2 among the three available. This amounts to choose at random a pairwise
comparison (A1 on D, A2 on D) among the 36 available. Suppose that according to ROC
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criterion, A1 is better than A2 on dataset D, i.e. (A1 on D) ≻ (A2 on D). Then the EM-score
discriminates A1 and A2 on dataset D in the same way, i.e. also finds A1 to be better than A2

on dataset D with 78 percent chance.

Besides, let us consider pairs (A1 on D, A2 on D) which are similarly ordered by ROC and
PR criteria, namely s.t. A1 is better than A2 (or the reverse) on dataset D according to both
EM and PR. According to Table 8.2, this represents every pairs but one in spambase and two
in smtp. Then, one achieves 27/33 = 82% of similarly discriminated pairs (w.r.t. to ROC and
PR criteria). Moreover, EM is able to recover the exact (w.r.t. ROC and PR criteria) ranking
of (A1 on D, A2 on D, A3 on D) on every datasets D excepting wilt and shuttle. For shuttle,
note that ROC scores are very close to each other (0.996, 0.992, 0.999) and thus not clearly
discriminates algorithms. The only significant error committed by EM is for the wilt dataset
(on which no feature sub-sampling is done due to the low dimension). This may come from
anomalies not being far enough in the tail of the normal distribution, e.g. forming a cluster
near the support of the latter distribution.

Same conclusions and similar accuracies hold for MV-score, which only makes one additional
error on the pair (iForest on pima, OCSVM on pima). Considering all the 36 pairs (8.9), one
observes 75% of good comparisons w.r.t. ROC-score, and 72% w.r.t. PR score. Considering the
pairs which are similarly ordered by ROC and PR criteria, this rate increases to 25/33 = 76%.
The errors are essentially made on shuttle, wild and annthyroid datasets.

Results from the unsupervised framework (training and testing data are polluted by outliers)
are similar for both EM and MV criteria. We just observe a slight decrease in accuracy. Con-
sidering all the pairs, one observes 26/36 = 72% (resp. 27/36 = 75%) of good comparisons
w.r.t. ROC-score (resp. w.r.t. PR score) for EM, and 75% (resp. 78%) of good comparisons
w.r.t. ROC-score (resp. w.r.t. PR score) for MV. Considering the pairs which are similarly
ordered by ROC and PR criteria, the rate for EM as for MV increases to 24/31 = 77%.

To conclude, when one algorithm has better performance than another on some fixed dataset,
according to both ROC and PR AUCs, one can expect to recover it without using labels with an
accuracy of 82% in the novelty detection framework and 77% in the unsupervised framework.

Remark 8.5. (Alternative measurements) There are other ways to measure the accuracy of
EM/MV. We can also compute a multi-label classification accuracy, by assigning a label to
each algorithm for each experiment (best (B), worst (W), or in-between (I)) according to
ROC/PR, and by looking if EM (or MV) is able to recover this label. This methodology is
based on the Hamming distance between two rankings, while the previous one is based on
the Kendall distance. One drawback of the Hamming distance is that within our setting, the
opposite of the ROC score 1 – ROC has a 33% accuracy (the label I is recovered). It has a
0% accuracy with the Kendall distance which counts how many pairs are well-ordered. An
other drawback of the Hamming distance to compare rankings is that one single mistake (e.g.
an over-ranking of one single algorithm) can shift the labels and yields a 0% accuracy, while
the order is globally recovered. (This drawback is limited in our case since we only consider
rankings of length three). That said, it is still interesting to have an additional measurement.
With this measure, EM has a 87% accuracy in the novelty detection setting, and 59% in the
unsupervised one. MV has a 65% accuracy in the novelty detection setting, and 59% in the
unsupervised one. According to this way of comparing EM and MV to ROC and PR, EM is
preferable to MV in the novelty detection framework. In the unsupervised framework, perfor-
mance of EM and MV are similar and relatively low.



Chapter 8. How to Evaluate the Quality of Anomaly Detection Algorithms? 139

8.5 Conclusion

One (almost) does not need labels to evaluate anomaly detection algorithms (on continuous
data). According to our benchmarks, the excess-mass and mass-volume based numerical cri-
teria introduced in this chapter are (in approximately 80 percent of the cases) able to recover
the performance order of algorithms on a fixed dataset (with potentially large dimensionality),
without using labels. High-dimensional datasets are dealt with using a method based on fea-
ture sub-sampling. This method also brings flexibility to EM and MV criteria, allowing for
instance to evaluate the importance of features.
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8.6 Further material on the experiments

FIGURE 8.3: ROC and PR curves for Isolation Forest (novelty detection framework)

FIGURE 8.4: ROC and PR curves for Isolation Forest (unsupervised framework)
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FIGURE 8.5: ROC and PR curves for One Class SVM (novelty detection framework)

FIGURE 8.6: ROC and PR curves for One Class SVM (unsupervised framework)
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FIGURE 8.7: ROC and PR curves for Local Outlier Factor (novelty detection framework)

FIGURE 8.8: ROC and PR curves for Local Outlier Factor (unsupervised framework)
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FIGURE 8.9: MV and EM curves for http dataset (novelty detection framework)

FIGURE 8.10: MV and EM curves for http dataset (unsupervised framework)
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FIGURE 8.11: MV and EM curves for pima dataset (novelty detection framework)

FIGURE 8.12: MV and EM curves for pima dataset (unsupervised framework)
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FIGURE 8.13: MV and EM curves for smtp dataset (novelty detection framework)

FIGURE 8.14: MV and EM curves for smtp dataset (unsupervised framework)
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FIGURE 8.15: MV and EM curves for wilt dataset (novelty detection framework)

FIGURE 8.16: MV and EM curves for wilt dataset (unsupervised framework)
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FIGURE 8.17: MV and EM curves for adult dataset (novelty detection framework).

FIGURE 8.18: MV and EM curves for adult dataset (unsupervised framework)





CHAPTER 9
One Class Splitting Criteria for Random Forests

We recall that this is a contribution of heuristic nature and not yet supported by statistical
results. This ongoing work has not been published yet and will certainly be completed in
the near future, but we believe that it has its place in our manuscript, given the convincing
empirical experiments we carried out and the rationale behind the approach promoted we gave.

Abstract This chapter presents the details relative to the introducing section 1.5.2.
Random Forests (RFs) are strong machine learning tools for classification and regression.
However, they remain supervised algorithms, and no extension of RFs to the one-class setting
has been proposed, except for techniques based on second-class sampling. This work fills this
gap by proposing a natural methodology to extend standard splitting criteria to the one-class
setting, structurally generalizing RFs to one-class classification. An extensive benchmark
of seven state-of-the-art anomaly detection algorithms is also presented. This empirically
demonstrates the relevance of our approach.

Note: The material of this chapter is based on submitted work (Goix et al., 2016a).

9.1 Introduction

Anomaly detection generally aims at finding patterns/observations in data that do not conform
to the expected behavior. Anomalies are usually assumed to lie in low probability regions of the
data generating process. This assumption drives many statistical anomaly detection methods.
Parametric techniques (Barnett & Lewis, 1994; Eskin, 2000) suppose that the normal data
are generated by a distribution belonging to some specific parametric model a priori known.
Here and hereafter, the term ‘normal data’ does not refer to the Gaussian distributed data, but
rather to not abnormal ones, i.e. data belonging to the above mentioned majority. Classical
non-parametric approaches are based on density (level set) estimation (Schölkopf et al., 2001;
Scott & Nowak, 2006; Breunig et al., 2000; Quinn & Sugiyama, 2014), on dimensionality
reduction (Shyu et al., 2003; Aggarwal & Yu, 2001) or on decision trees (Liu et al., 2008; Shi
& Horvath, 2012). Relevant overviews of current research on anomaly detection can be found
in Hodge & Austin (2004); Chandola et al. (2009); Patcha & Park (2007); Markou & Singh
(2003).

The algorithm proposed in this chapter lies in the novelty detection setting, also called semi-
supervised anomaly detection or one-class classification. In this framework, we assume that
we only observe examples of one class (referred as the normal class, or inlier class). The
second (hidden) class is called the abnormal class, or outlier class. The goal is to identify
characteristics of the normal class, such as its support or some density level sets with levels
close to zero. This setup is for instance used in some (non-parametric) kernel methods such

149
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as One-Class Support Vector Machine algorithm (OCSVM) (Schölkopf et al., 2001), which
extends the SVM methodology (Cortes & Vapnik, 1995; Shawe-Taylor & Cristianini, 2004) to
handle training using only normal observations (see Section 4.2.1). Recently, Least Squares
Anomaly Detection (LSAD) (Quinn & Sugiyama, 2014) similarly extends a multi-class prob-
abilistic classifier (Sugiyama, 2010) to the one-class setting. Both OCSVM and LSAD algo-
rithms extend structurally the corresponding classification framework, namely without artifi-
cially creating a second class to fall back on a two-class problem. The methodology proposed
in this work applies the same structural effort to Random Forests (RFs).

RFs (Breiman, 2001) are estimators that fit a number of decision tree classifiers on different
random sub-samples of the dataset. Each tree is built recursively, according to a splitting
criterion based on some impurity measure of a node. The prediction is done by an average
over each tree prediction. In classification the averaging is based on a majority vote. RFs are
strong machine learning tools, comparing well with state-of-the-art methods such as SVM or
boosting algorithms (Freund & Schapire, 1996), and used in a wide range of domains (Svetnik
et al., 2003; Díaz-Uriarte & De Andres, 2006; Genuer et al., 2010). Practical and theoretical
insights on RFs are given in Genuer et al. (2008); Biau et al. (2008); Louppe (2014); Biau &
Scornet (2016).

Yet few attempts have been made to transfer the idea of RFs to one-class classification (Désir
et al., 2012; Liu et al., 2008; Shi & Horvath, 2012). In Liu et al. (2008), the novel concept of
isolation is introduced: the Isolation Forest algorithm isolates anomalies, instead of profiling
the normal behavior which is the usual approach. It avoids adapting splitting rules to the one-
class setting by using extremely randomized trees, also named extra trees (Geurts et al., 2006):
isolation trees are built completely randomly, without any splitting rule. Therefore, Isolation
Forest is not really based on RFs, the base estimators being extra trees instead of classical
decision trees. However, Isolation Forest performs very well in practice with low memory
and time complexities. In Désir et al. (2012); Shi & Horvath (2012), outliers are generated to
artificially form a second class. In Désir et al. (2012) the authors propose a technique to reduce
the number of outliers needed by shrinking the dimension of the input space. The outliers are
then generated from the reduced space using a distribution complementary to the ‘normal’
distribution. Thus their algorithm artificially generates a second class, to use classical RFs. In
Shi & Horvath (2012), two different outliers generating processes are compared. In the first
one, an artificial second class is added by randomly sampling from the product of empirical
marginal distributions. In the second one outliers are uniformly generated from the hyper-
rectangle that contains the observed data. The first option is claimed to work best in practice,
which can be understood from the curse of dimensionality argument: in large dimension (Tax
& Duin, 2002), when the outliers distribution is not tightly defined around the target set, the
chance for an outlier to be in the target set becomes very small, so that a huge number of
outliers is needed.

Looking beyond the RF literature, Scott & Nowak (2006) propose a methodology to build
dyadic decision trees to estimate minimum-volume sets (Polonik, 1997; Einmahl & Mason,
1992). This is done by reformulating their structural risk minimization problem to be able to
use Blanchard et al. (2004)’s algorithm. While this methodology can also be used for non-
dyadic trees pruning (assuming such a tree has been previously constructed, e.g. using some
greedy heuristic), it does not allow to effectively grow such trees. A dyadic structure has to be
assumed, to be able to 1) link the tree growing process with the general optimization problem
and 2) to control the complexity of the resulting partitions, with respect to the regularity of the
underlying distribution. In other words, this strong tree structure is needed to derive theoretical
guaranties. In the same spirit, Clémençon & Robbiano (2014) proposes to use the two-class
splitting criterion defined in Clémençon & Vayatis (2009b). This two-class splitting rule aims
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at producing oriented decision trees with a ‘left-to-right’ structure to address the bipartite
ranking task. Extension to the one-class setting is done by assuming a uniform distribution
for the outlier class. This left-to-right structure is needed to reduce the tree building process to
a recursive optimization procedure, thus allowing to derive consistency and rate bounds. Thus,
in these two references (Scott & Nowak, 2006; Clémençon & Robbiano, 2014), the priority is
given to the theoretical analysis. This imposes constraints on the tree structure which becomes
far from the general structure of the base estimators in RF. The price to pay is in the flexibility
of the model, and its ability to capture complex broader patterns or structural characteristics
from the data.

In this paper, we make the choice to stick to the RF framework. We do not assume any structure
for the binary decision trees. The price to pay is the lack of theoretical guaranties, the gain is
that we keep the flexibility of RF and are thus able to compete with state-of-the-art anomaly
detection algorithms. Besides, we do not assume any (fixed in advance) outlier distribution as
in Clémençon & Robbiano (2014), but define it in an adaptive way during the tree building
process.

To the best of our knowledge, no algorithm structurally extends (without second class sampling
and without alternative base estimators) RFs to one-class classification. Here we precisely
introduce such a methodology. It builds on a natural adaptation of two-class splitting criteria
to the one-class setting, as well as an adaptation of the two-class majority vote.

Basic idea. To split a node without second class (outliers) examples, the idea is as follows.
Each time we are looking for the best split for a node t, we simply replace (in the two-class
impurity decrease to be maximized (9.4)) the second class proportion going to the left child
node tL by the proportion expectation Leb(tL)/Leb(t) (idem for the right node), where Leb(t)
denotes the volume of the rectangular cell corresponding to node t. It ensures that one child
node tries to capture the maximum number of observations with a minimal volume, while the
other child looks for the opposite.

This simple idea corresponds in fact to an adaptive modeling of the outlier distribution. The
proportion expectation mentioned above being weighted proportionally to the number of nor-
mal instances in node t, the resulting outlier distribution is tightly concentrated around the in-
liers. Besides, and this attests the consistency of our approach with the two-class framework,
it turns out that the one-class model promoted here corresponds to the asymptotic behavior of
an adaptive (w.r.t. the tree growing process) outliers generating methodology.

This chapter is structured as follows. Section 9.2 provides the reader with necessary back-
ground, to address Section 9.3 which proposes a generic adaptation of RFs to the one-class
setting and describes a generic one-class random forest algorithm. The latter is compared em-
pirically with state-of-the-art anomaly detection methods in Section 9.4. Finally a theoretical
justification of the one-class criterion is given in Section 9.5.

9.2 Background on decision trees

Let us denote by X ⊂ Rd the d-dimensional hyper-rectangle containing all the observations.
Consider a binary tree on X whose node values are subsets of X , iteratively produced by
splitting X into two disjoint subsets. Each internal node t with value Xt is labeled with a split
feature mt and split value ct (along that feature), in such a way that it divides Xt into two
disjoint spaces XtL := {x ∈ Xt, xmt < ct} and XtR := {x ∈ Xt, xmt ≥ ct}, where tL
(resp. tR) denotes the left (resp. right) children of node t, and xj denotes the jth coordinate
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of vector x. Such a binary tree is grown from a sample X1, . . . , Xn (for all i, Xi ∈ X ) and
its finite depth is determined either by a fixed maximum depth value or by a stopping criterion
evaluated on the nodes (e.g. based on an impurity measure). The external nodes (or the leaves)
form a partition of the input space X .

In a supervised classification setting, these binary trees are called classification trees and pre-
diction is made by assigning to each sample x ∈ X the majority class of the leaves containing
x. This is called the majority vote. Classification trees are usually built using an impurity
measure i(t) whose decrease is maximized at each split of a node t, yielding an optimal split
(m∗t , c

∗
t ). The decrease of impurity (also called goodness of split) ∆i(t, tL, tR) w.r.t. the split

(mt, ct) corresponding to the partition Xt = XtL ⊔ XtR of the node t is defined as

∆i(t, tL, tR) = i(t)− pLi(tL)− pRi(tR), (9.1)

where pL = pL(t) (resp. pR = pR(t)) is the proportion of samples from Xt going to XtL

(resp. to XtR). The impurity measure i(t) reflects the goodness of node t: the smaller i(t),
the purer the node t and the better the prediction by majority vote on this node. Usual choices
for i(t) are the Gini index (Gini, 1912) and the Shannon entropy (Shannon, 2001). To produce
a randomized tree, these optimization steps are usually partially randomized (conditionally
on the data, splits (m∗t , c

∗
t )’s become random variables), and a classification tree can even be

grown totally randomly (Geurts et al., 2006). In a two-class classification setup, the Gini index
is

iG(t) = 2

(
nt

nt + n′t

)(
n′t

nt + n′t

)
= 1− n2

t + n′2t
(nt + n′t)2

, (9.2)

where nt (resp. n′t) stands for the number of observations with label 0 (resp. 1) in node t.
The Gini index is maximal when nt/(nt + n′t) = n′t/(nt + n′t) = 0.5, namely when the
conditional probability to have label 0 given that we are in node t is the same as to have label
0 unconditionally: the node t does not discriminate at all between the two classes.

For a node t, maximizing the impurity decrease (9.1) is equivalent to minimizing pLi(tL) +
pRi(tR). As pL = (ntL + n′tL)/(nt + n′t) and pR = (ntR + n′tR)/(nt + n′t), and the quantity
(nt + n′t) being constant in the optimization problem, this is equivalent to minimizing the
following proxy of the impurity decrease:

I(tL, tR) = (ntL + n′tL)i(tL) + (ntR + n′tR)i(tR). (9.3)

Note that if we consider the Gini index as the impurity criteria, the corresponding proxy of the
impurity decrease is

IG(tL, tR) =
ntLn

′
tL

ntL + n′tL
+

ntRn
′
tR

ntR + n′tR
. (9.4)

In the one-class setting, no label is available, hence the impurity measure i(t) does not apply
to this setup. The standard splitting criterion which consists in minimizing the latter cannot be
used anymore.

9.3 Adaptation to the one-class setting

The two reasons why RFs do not apply to one-class classification are that the standard splitting
criterion does not apply to this setup, as well as the majority vote. In this section, we propose
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a one-class splitting criterion and a natural one-class version of the majority vote.

9.3.1 One-class splitting criterion

As one does not observe the second-class (outliers), n′t needs to be defined. In the naive
approach below, it is defined as n′t := n′Leb(Xt)/Leb(X ), where n′ is the supposed total
number of (hidden) outliers. In the adaptive approach hereafter, it will be defined as n′t := γnt,
with typically γ = 1. Thus, the class ratio γt := n′t/nt is defined in both approaches and goes
to 0 when Leb(Xt) → 0 in the naive approach, while it is maintained constant γt ≡ γ in the
adaptive one.

Naive approach. A naive approach to extend the Gini splitting criterion to the one-class
setting is to assume a uniform distribution for the second class (outliers), and to replace their
number n′t in node t by the expectation n′Leb(Xt)/Leb(X ), where n′ denotes the total number
of outliers (for instance, it can be chosen as a proportion of the number of inliers). Here and
hereafter, Leb denotes the Lebesgue measure on Rd. The problem with this approach appears
when the dimension is not small. As mentioned in the introduction (curse of dimensionality),
when actually generating n′ uniform outliers on X , the probability that a node (sufficiently
small to yield a good precision) contains at least one of them is very close to zero. That is
why data-dependent distributions for the outlier class are often considered (Désir et al., 2012;
Shi & Horvath, 2012). Taking the expectation n′Leb(Xt)/Leb(X ) instead of the number of
points in node t does not solve the curse of dimensionality mentioned in the introduction: the
volume proportion Lt := Leb(Xt)/Leb(X ) is very close to 0 for nodes t deep in the tree,
specially in large dimension. In addition, we typically grow trees on sub-samples of the input
data, meaning that even the root node of the trees may be very small compared to the hyper-
rectangle containing all the input data. An other problem is that the Gini splitting criterion
is skew-sensitive (Flach, 2003), and has here to be apply on nodes t with 0 ≃ n′t ≪ nt.
When trying empirically this approach, we observe that splitting such nodes produces a child
containing (almost) all the data (see Section 9.5).

Remark 9.1. To illustrate the fact that the volume proportion Lt := Leb(Xt)/Leb(X ) becomes
very close to zero in large dimension for lots of nodes t (in particular the leaves), suppose for
the sake of simplicity that the input space is X = [0, 1]d. Suppose that we are looking for a
rough precision of 1/23 = 0.125 in each dimension, i.e. a unit cube precision of 2−3d. To
achieve such a precision, the splitting criterion has to be used on nodes/cells t of volume of
order 2−3d, namely with Lt = 1/23d. Note that if we decide to choose n′ to be 23d times larger
than the number of inliers in order that n′Lt is not negligible w.r.t. the number of inliers, the
same (reversed) problem of unbalanced classes appears on nodes with small depth.

Adaptive approach. Our solution is to remove the uniform assumption on the outliers, and
to choose their distribution adaptively in such a way it is tightly concentrated around the inlier
distribution. Formally, the idea is to maintain constant the class ratio γt := n′t/nt on each
node t: before looking for the best split, we update the number of outliers to be equal (up to a
scaling constant γ) to the number of inliers, n′t = γnt, i.e. γt ≡ γ. These (hidden) outliers are
uniformly distributed on node t. The parameter γ is typically set to γ = 1, see Remark 9.5.

Resulting density. Figure 9.1 shows the corresponding outlier density G. Note that G is a
piece-wise approximation of the inlier distribution F . Considering the Neyman-Pearson test
X ∼ F vs. X ∼ G instead of X ∼ F vs. X ∼ Leb may seem unusual at first sight.
However, note that there is ǫ > 0 such that G > ǫ on the entire input space, since the density
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G is constant on each node and equal to the average of F on this node before splitting it. If
the average of F was estimated to be zero (no inlier in the node), the node would not have
been splitted, from where the existence of ǫ. Thus, one might think of G as a piece-wise
approximation of Fǫ := (1 − ǫ)F + ǫLeb. Yet, one can easily show that optimal tests for
the Neyman-Pearson problem H0 : X ∼ F vs. H1 : X ∼ Fǫ are identical to the optimal
tests for H0 : X ∼ F vs. H1 : X ∼ Leb, since the corresponding likelihood ratios are
related by a monotone transformation, see Scott & Blanchard (2009) for instance (in fact, this
reference shows that these two problems are even equivalent in terms of consistency and rates
of convergence of the learning rules).

With this methodology, one cannot derive a one-class version of the Gini index (9.2), but
we can define a one-class version of the proxy of the impurity decrease (9.4), by simply
replacing n′tL (resp. n′tR) by n′tλL (resp. n′tλR), where λL := Leb(XtL)/Leb(Xt) and
λR := Leb(XtR)/Leb(Xt) are the volume proportion of the two child nodes:

IOC−ad
G (tL, tR) =

ntLγntλL

ntL + γntλL
+

ntRγntλR

ntR + γntλR
. (9.5)

Minimization of the one-class Gini improvement proxy (9.5) is illustrated in Figure 9.2. Note
that n′tλL (resp. n′tλR) is the expectation of the number of uniform observations (on Xt) among
n′t falling into the left (resp. right) node.

Choosing the split minimizing IOC−ad
G (tL, tR) at each step of the tree building process, cor-

responds to generating n′t = γnt outliers each time the best split has to be chosen for node
t, and then using the classical two-class Gini proxy (9.4). The only difference is that n′tL and
n′tR are replaced by their expectations n′tλtL and n′tλtR in our method.

Remark 9.2. (BY-PRODUCT: EFFICIENTLY GENERATING OUTLIERS) As a by-product, we
obtain an efficient method to generate outliers tightly concentrated around the support of the
normal distribution: it suffices to generate them as described above, recursively during the tree
building process. Sampling n′t uniform points on Xt, then using the latter to find the best split
w.r.t. (9.4), and recommence on XtL and XtR .

Remark 9.3. (EXTENSION TO OTHER IMPURITY CRITERIA) Our extension to the one-class
setting also applies to other impurity criteria. For instance, in the case of the Shannon en-

tropy defined in the two-class setup by iS(t) = nt
nt+n′

t
log2

nt+n′
t

nt
+

n′
t

nt+n′
t
log2

nt+n′
t

n′
t

, the

one-class impurity improvement proxy becomes IOC−ad
S (tL, tR) = ntL log2

ntL
+γntλL

ntL
+

ntR log2
ntR

+γntλR

ntR
.

G

F naive
approach

adaptive
approach

−→
F

G
F

−→ G

FIGURE 9.1: Outliers distribution G in the naive and adaptive approach. In the naive ap-
proach, G does not depends on the tree and is constant on the input space. In the adaptive
approach the distribution depends on the inlier distribution F through the tree. The outliers
density is constant and equal to the average of F on each node before splitting it.
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X Xt

Xt

γ = 1 γt ≃ 0

tγ

adaptivity

FIGURE 9.2: The left part of this figure represents the dataset under study and the underlying
density. After some splits on this initial node X , let us consider the node Xt illustrated in the
right part of this figure: without the proposed adaptive approach, the class ratio γt becomes
too small and leads to poor splits (all the data are in the ‘normal side’ of the split, which thus
does not discriminate at all). Contrariwise, setting γ to one, i.e. using our adaptive approach,
is far preferable. Note that a given γ corresponds to a level set tγ .

9.3.2 Prediction: a majority vote with one single candidate?

Now that RFs can be grown in the one-class setting using our one-class splitting criterion,
the forest has to return a prediction adapted to this framework. In other words we also need
to extend the concept of majority vote. Most usual one-class (or more generally anomaly
detection) algorithms actually provide more than just a level-set estimate or a predicted label
for any new observation, abnormal vs. normal. Instead, they return a real valued function,
termed scoring function, defining a pre-order/ranking on the input space. Such a function s :
Rd → R permits to rank any observations according to their supposed ‘degree of abnormality’.
Thresholding it provides level-set estimates, as well as a decision rule that splits the input space
into ‘normal’ and ‘abnormal’ regions. The scoring function s(x) we use is the one defined in
Liu et al. (2008). It is a decreasing function of the average depth of the leaves containing x in
the forest, ‘if the trees were fully grown’: an average term is added to each node containing
more than one sample, say containing N samples. This term c(N) is the average depth of an
extremely randomized tree (Geurts et al., 2006) (i.e. built without minimizing any criterion,
by randomly choosing one feature and one uniform value over this feature to split on) on N
samples. Formally,

log2 s(x) = −
( ∑

t leaves

1{x∈t}dt + c(nt)

)
/ c(n), (9.6)

where dt is the depth of node t, and c(n) = 2H(n−1)−2(n−1)/n, H(i) being the harmonic
number.

Remark 9.4 (ALTERNATIVE SCORING FUNCTIONS). Although we use the scoring function
defined in (9.6) because of its established high performance (Liu et al., 2008), other scor-
ing functions can be defined. A natural idea to adapt the majority vote to the one-class set-
ting is to change the single vote of a leaf node t into the fraction nt

Leb(Xt)
, the forest output

being the average of the latter quantity over the forest, s(x) =
∑

t leaves 1{x∈t}
nt

Leb(Xt)
. In

such a case, each tree of the forest yields a piece-wise density estimate, on its induced par-
tition. The output produced by the forest is then a step-wise density estimate. We could
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also think about the local density of a typical cell. For each point x of the input space,
it returns the average number of observations in the leaves containing x, divided by the
average volume of such leaves. The output of OneClassRF is then the scoring function
s(x) =

(∑
t leaves 1{x∈t}nt

)(∑
t leaves 1{x∈t}Leb(Xt)

)−1
, where the sums are over each leave

of each tree in the forest. This score can be interpreted as the local density of a ‘typical’ cell
(typical among those usually containing x).

9.3.3 OneClassRF: a Generic One-Class Random Forest algorithm

Let us summarize our One Class Random Forest algorithm, based on generic RFs (Breiman,
2001). It has 6 parameters: max_samples, max_features_tree, max_features_node, γ,
max_depth, n_trees.

Each tree is classically grown on a random subset of both the input samples and the input
features (Ho, 1998; Panov & Džeroski, 2007). This random subset is a sub-sample of size
max_samples, with max_features_tree variables chosen at random without replacement
(replacement is only done after the tree is grown). The tree is built by minimizing (9.5) for
each split, using parameter γ (recall that n′t := γnt), until the maximal depth max_depth is
achieved. Minimizing (9.5) is done as introduced in Amit & Geman (1997), defining a large
number max_features_node of geometric features and searching over a random selection of
these for the best split at each node. The forest is composed of a number n_trees of trees. The
predicted score of a point x is given by s(x), the s’s being defined in Section 9.3.2.

Figure 9.3 represents the level set of the scoring function produced by OneClassRF, with only
one tree (n_trees= 1) of maximal depth max_depth=4, without sub-sampling, and using the
Gini-based one-class splitting criterion with γ = 1.

FIGURE 9.3: OneClassRF with one tree: level-sets of the scoring function

Remark 9.5. (INTERPRETATION OF γ) In order for the splitting criterion (9.5) to perform well,
n′t is expected to be of the same order of magnitude as the number of normal observations nt.
If γ = n′t/nt ≪ 1, the split puts every normal data on the same side, even the ones which
are far in the tail of the distribution, thus widely over-estimating the support of normal data.
If γ ≫ 1, the opposite effect happens, yielding an estimate of a t-level set with t not close
enough to 0. Figure 9.2 illustrates the splitting criterion when γ varies. It clearly shows that
there is a link between parameter γ and the level tγ of the induced level-set estimate. But
from the theory, an explicit relation between γ and tγ is hard to derive. By default we set γ
to 1. One could object that in some situations, it is useful to randomize this parameter. For
instance, in the case of a bi-modal distribution for the normal behavior, one split of the tree
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X

γ = 10 γ = 1 γ = 0.1

FIGURE 9.4: Illustration of the standard splitting criterion on two modes when the proportion
γ varies.

needs to separate two clusters, in order for the level set estimate to distinguish between the
two modes. As illustrated in Figure 9.4 , it can only occur if n′t is large with respect to nt

(γ >> 1). However, the randomization of γ is somehow included in the randomization of
each tree, thanks to the sub-sampling inherent to RFs. Moreover, small clusters tend to vanish
when the sub-sample size is sufficiently small: a small sub-sampling size is used in Liu et al.
(2008) to isolate outliers even when they form clusters.

Remark 9.6. (ALTERNATIVE STOPPING CRITERIA) Other stopping criteria than a maximal
depth may be considered. We could stop splitting a node t when it contains less than n_min
observations, or when the quantity nt/Leb(Xt) is large enough (all the points in the cell Xt are
likely to be normal) or close enough to 0 (all the points in the cell Xt are likely to be abnormal).
These options are not discussed in this work.

Remark 9.7. (VARIABLE IMPORTANCE) In the multi-class setting, Breiman (2001) proposed
to evaluate the importance of a feature j ∈ {1, . . . d} for prediction by adding up the weighted
impurity decreases for all nodes t where Xj is used, averaged over all the trees. The analogue
quantity can be computed with respect to the one-class impurity decrease proxy. In our one-
class setting, this quantity represents the size of the tail of Xj , and can be interpreted as the
capacity of feature j to discriminate between normal/abnormal data.

9.4 Benchmarks

In this section, we compare the OneClassRF algorithm described above to seven state-of-art
anomaly detection algorithms: the isolation forest algorithm (Liu et al., 2008) (iForest), a
one-class RFs algorithm based on sampling a second-class (Désir et al., 2012) (OCRFsam-
pling), one class SVM (Schölkopf et al., 2001) (OCSVM), local outlier factor (Breunig et al.,
2000) (LOF), Orca (Bay & Schwabacher, 2003), Least Squares Anomaly Detection (Quinn &
Sugiyama, 2014) (LSAD), Random Forest Clustering (Shi & Horvath, 2012) (RFC).

9.4.1 Default parameters of OneClassRF.

The default parameters taken for our algorithm are the followings. max_samples is fixed to
20% of the training sample size (with a minimum of 100); max_features_tree is fixed to
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TABLE 9.1: Original Datasets characteristics

Datasets nb of samples nb of features anomaly class

adult 48842 6 class ’> 50K’ (23.9%)
annthyroid 7200 6 classes 6= 3 (7.42%)
arrhythmia 452 164 classes 6= 1 (features 10-14 removed) (45.8%)
forestcover 286048 10 class 4 (vs. class 2 ) (0.96%)
http 567498 3 attack (0.39%)
ionosphere 351 32 bad (35.9%)
pendigits 10992 16 class 4 (10.4%)
pima 768 8 pos (class 1) (34.9%)
shuttle 85849 9 classes 6= 1 (class 4 removed) (7.17%)
smtp 95156 3 attack (0.03%)
spambase 4601 57 spam (39.4%)
wilt 4839 5 class ’w’ (diseased trees) (5.39%)

TABLE 9.2: Results for the novelty detection setting (semi-supervised framework). The
table reports AUC ROC and AUC PR scores (higher is better) for each algorithms. The train-
ing time of each algorithm has been limited (for each experiment among the 10 performed
for each dataset) to 30 minutes, where ‘NA’ indicates that the algorithm could not finish
training within the allowed time limit. In average on all the datasets, our proposed algo-
rithm ‘OneClassRF’ achieves both best AUC ROC and AUC PR scores (with LSAD for AUC
ROC). It also achieves the lowest cumulative training time.

Dataset OneClassRF iForest OCRFsampl. OCSVM LOF Orca LSAD RFC

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR
adult 0.665 0.278 0.661 0.227 NA NA 0.638 0.201 0.615 0.188 0.606 0.218 0.647 0.258 NA NA
annthyroid 0.936 0.468 0.913 0.456 0.918 0.532 0.706 0.242 0.832 0.446 0.587 0.181 0.810 0.327 NA NA
arrhythmia 0.684 0.510 0.763 0.492 0.639 0.249 0.922 0.639 0.761 0.473 0.720 0.466 0.778 0.514 0.716 0.299
forestcover 0.968 0.457 0.863 0.046 NA NA NA NA 0.990 0.795 0.946 0.558 0.952 0.166 NA NA
http 0.999 0.838 0.994 0.197 NA NA NA NA NA NA 0.999 0.812 0.981 0.537 NA NA
ionosphere 0.909 0.643 0.902 0.535 0.859 0.609 0.973 0.849 0.959 0.807 0.928 0.910 0.978 0.893 0.950 0.754
pendigits 0.960 0.559 0.810 0.197 0.968 0.694 0.603 0.110 0.983 0.827 0.993 0.925 0.983 0.752 NA NA
pima 0.719 0.247 0.726 0.183 0.759 0.266 0.716 0.237 0.700 0.152 0.588 0.175 0.713 0.216 0.506 0.090
shuttle 0.999 0.998 0.996 0.973 NA NA 0.992 0.924 0.999 0.995 0.890 0.782 0.996 0.956 NA NA
smtp 0.922 0.499 0.907 0.005 NA NA 0.881 0.656 0.924 0.149 0.782 0.142 0.877 0.381 NA NA
spambase 0.850 0.373 0.824 0.372 0.797 0.485 0.737 0.208 0.746 0.160 0.631 0.252 0.806 0.330 0.723 0.151
wilt 0.593 0.070 0.491 0.045 0.442 0.038 0.323 0.036 0.697 0.092 0.441 0.030 0.677 0.074 0.896 0.631

average: 0.850 0.495 0.821 0.311 0.769 0.410 0.749 0.410 0.837 0.462 0.759 0.454 0.850 0.450 0.758 0.385
cum. train time: 61s 68s NA NA NA 2232s 73s NA

50% of the total number of features with a minimum of 5 (i.e. each tree is built on 50% of the
total number of features); max_features_node is fixed to 5; γ is fixed to 1 (see Remark 9.5);
max_depth is fixed to log2 (logarithm in base 2) of the training sample size as in Liu et al.
(2008); n_trees is fixed to 100 as in the previous reference; and parameter si is set to s3 as
defined in (9.6).

9.4.2 Hyper-Parameters of tested algorithms

Overall we chose to train the different algorithms with their (default) hyper-parameters as seen
in their respective paper or author’s implementation.

The OCSVM algorithm uses default parameters: kernel=’rbf’, tol=1e-3, nu=0.5,
shrinking=True, gamma=1/n_features, where tol is the tolerance for stopping cri-
terion.



Chapter 9. One Class Splitting Criteria for Random Forests 159

The LOF algorithm uses default parameters: n_neighbors=5, leaf_size=30,
metric=’minkowski’, contamination=0.1, algorithm=’auto’, where the al-
gorithm parameters stipulates how to compute the nearest neighbors (either ball-tree, kd-tree
or brute-force).

The iForest algorithm uses default parameters: n_estimators=100,
max_samples=min(256, n_samples), max_features=1, bootstrap=false,
where bootstrap states whether samples are drawn with replacement.

The OCRFsampling algorithm uses default parameters: the number of dimensions for the
Random Subspace Method krsm=-1, the number of features randomly selected at each node
during the induction of the tree krfs=-1, n_tree=100, the factor controlling the extension
of the outlier domain used for outlier generation according to the volume of the hyper-box
surrounding the target data alpha=1.2, the factor controlling the number of outlier data
generated according to the number of target data beta=10, whether outliers are generated
from uniform distribution optimize=0, whether data outside target bounds are considered
as outlier data rejectOutOfBounds=0.

The Orca algorithm uses default parameter k=5 (number of nearest neighbors) as well as
N=n/8 (how many anomalies are to be reported). The last setting, set up in the empirical
evaluation of iForest in Liu et al. (2012), allows a better computation time without impacting
Orca’s performance.

The RFC algorithm uses default parameters: no.forests=25, no.trees=3000, the
Addcl1 Random Forest dissimilarity addcl1=T, addcl2=F, use the importance measure
imp=T, the data generating process oob.prox1=T, the number of features sampled at each
split mtry1=3.

The LSAD algorithm uses default parameters: the maximum number of samples per kernel
n_kernels_max=500, the center of each kernel (the center of the random sample subset
by default) kernel_pos=’None’, the kernel scale parameter (using the pairwise median
trick by default)gamma=’None’, the regularization parameter rho=0.1.

9.4.3 Description of the datasets

The characteristics of the twelve reference datasets considered here are summarized in Ta-
ble 9.1. They are all available on the UCI repository (Lichman, 2013) and the preprocessing is
done in a classical way. We removed all non-continuous attributes as well as attributes taking
less than 10 different values. The http and smtp datasets belong to the KDD Cup ’99 dataset
(KDDCup, 1999; Tavallaee et al., 2009), which consist of a wide variety of hand-injected at-
tacks (anomalies) in a closed network (normal background). They are classically obtained as
described in Yamanishi et al. (2000). This two datasets are available on the scikit-learn library
(Pedregosa et al., 2011). The shuttle dataset is the fusion of the training and testing datasets
available in the UCI repository. As in Liu et al. (2008), we use instances from all different
classes but class 4. In the forestcover data, the normal data are the instances from class 2
while instances from class 4 are anomalies (as in Liu et al. (2008)). The ionosphere dataset
differentiates ‘good’ from ‘bad’ radars, considered here as abnormal. A ‘good’ radar shows
evidence of some type of structure in the ionosphere. A ‘bad’ radar does not, its signal passing
through the ionosphere. The spambase dataset consists of spam or non-spam emails. The for-
mer constitute our anomaly class. The annthyroid medical dataset on hypothyroidism contains
one normal class and two abnormal ones, which form our outliers. The arrhythmia dataset
reflects the presence and absence (class 1) of cardiac arrhythmia. The number of attributes
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being large considering the sample size, we removed attributes containing missing data. The
pendigits dataset contains 10 classes corresponding to the digits from 0 to 9, examples being
handwriting samples. As in Schubert et al. (2012), the abnormal data are chosen to be those
from class 4. The pima dataset consists of medical data on diabetes. Patients suffering from
diabetes (normal class) were considered outliers. The wild dataset involves detecting diseased
trees in Quickbird imagery. Diseased trees (class ‘w’) is our abnormal class. In the adult
dataset, the goal is to predict whether income exceeds $ 50K/year based on census data. We
only keep the 6 continuous attributes.

9.4.4 Results
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FIGURE 9.5: Performances of the algorithms on each dataset in the novelty detection frame-
work: ROC AUCs are displayed on the top, Precision-Recall AUCs in the middle and training
times1on the bottom, for each dataset and algorithm. The x-axis represents the datasets.

The experiments are performed in the novelty detection framework, also named semi-
supervised anomaly detection, where the training set consists of normal data only. We sim-
ply removed anomalies from the training data. For each algorithm, 10 experiments on ran-
dom training and testing datasets are performed, yielding averaged ROC and Precision-Recall
curves whose AUC are summarized in Table 9.2 (see the last section of this chapter to further
insights on the benchmarks). It appears that OneClassRF has the best performance on five
datasets in terms of ROC AUCs, and is also the best in average. Computation times (training
plus testing) of OneClassRF are also very competitive. Figure 9.5 shows that the amount of
time to train and test any dataset takes less than one minute with OneClassRF, whereas some
algorithms have far higher computation times (OCRFsampling, OneClassSVM, LOF and Orca
have computation times higher than 30 minutes in some datasets). Our approach leads to re-
sults similar to quite new algorithms such as iForest and LSDA.

1For OCRF, Orca and RFC, testing and training time cannot be isolated because of algorithms implementation:
for these algorithms, the sum of the training and testing times are displayed in Figure 9.5 and 9.6.



Chapter 9. One Class Splitting Criteria for Random Forests 161

Experiments in an unsupervised framework (the training set is polluted by abnormal data) have
also been made. The anomaly rate is arbitrarily bounded to 10% max (before splitting data into
training and testing sets).

9.5 Theoretical justification for the one-class splitting criterion

9.5.1 Underlying model

In order to generalize the two-class framework to the one-class one, we need to consider the
population versions associated to empirical quantities (9.1), (9.2) and (9.3), as well as the
underlying model assumption. The latter can be described as follows.

Existing Two-Class Model (n, α). We consider a random variable (r.v.) X : Ω → Rd

w.r.t. a probability space (Ω,F ,P). The law of X depends on another r.v. y ∈ {0, 1}, verifying
P(y = 1) = 1− P(y = 0) = α. We assume that conditionally on y = 0, X follows a law F ,
and conditionally on y = 1 a law G. To summarize:

X | y = 0 ∼ F, P(y = 0) = 1− α,

X | y = 1 ∼ G, P(y = 1) = α.

Then, considering p(tL|t) = P(X ∈ XtL |X ∈ Xt), p(tR|t) = P(X ∈ XtR |X ∈ Xt), the
probabilistic version of (9.1) is

∆itheo(t, tL, tR) = itheo(t) − p(tL|t) itheo(tL) − p(tR|t) itheo(tR), (9.7)

for instance using the Gini index itheo = itheoG ,

itheoG (t) = 2P(y = 0|X ∈ Xt) · P(y = 1|X ∈ Xt) =
P(X ∈ Xt, y = 0) · P(X ∈ Xt, y = 1)

P(X ∈ Xt)2

(9.8)

which is the population version of (9.2). Indeed, when observing n i .i .d . realizations
(X1, y1), . . . , (Xn, yn) of (X, y), replacing probabilities by their empirical version amounts
to replacing P(X ∈ Xt, y = 0) by nt/n, P(X ∈ Xt, y = 1) by n′t/n and P(X ∈ Xt) by
(nt + n′t)/n with nt = card{i, Xi ∈ Xt, yi = 0} and n′t = card{i, Xi ∈ Xt, yi = 1}, thus
recovering (9.2).

One-Class-Model (n, α). We model the one-class framework as follows. Among the n i .i .d .
observations, we only observe those with y = 0 (the normal behavior), namely N realizations
of (X | y = 0), where N is itself a realization of a r.v. N of law N ∼ Bin

(
n, (1 − α)

)
. Here

and hereafter, Bin(n, p) denotes the binomial distribution with parameters (n, p). As outliers
are not observed, it is natural to assume that G follows a uniform distribution on the hyper-
rectangle X containing all the observations, so that G has a constant density g(x) ≡ 1/Leb(X )
on X . Note that this assumption will be removed in the adaptive approach described below
(which aims at maintaining a non-negligible proportion of (hidden) outliers in every nodes).

Let us define Lt = Leb(Xt)/Leb(X ). Then, P(X ∈ Xt, y = 1) = P(y = 1)P(X ∈ Xt| y =
1) = αLt. Replacing in (9.8) the probability P(X ∈ Xt, y = 0) by its empirical version nt/n,
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we then obtain the one-class empirical Gini index

iOC
G (t) =

ntαnLt

(nt + αnLt)2
. (9.9)

In the following, we say that this one-class index is a semi-empirical version of (9.8), in the
sense that it is obtained by considering empirical quantities for the (observed) normal behavior
and population quantities for the (non-observed) abnormal behavior. Now, maximizing the
population version of the impurity decrease ∆itheoG (t, tL, tR) as defined in (9.7) is equivalent
to minimizing

p(tL|t) itheoG (tL) + p(tR|t) itheoG (tR). (9.10)

Considering semi-empirical versions of p(tL|t) and p(tR|t), as for (9.9), gives pn(tL|t) =
(ntL + αnLtL)/(nt + αnLt) and pn(tR|t) = (ntR + αnLtR)/(nt + αnLt). Then, the semi-
empirical version of (9.10) is

pn(tL|t) iOC
G (tL) + pn(tR|t) iOC

G (tR) =
1

(nt + αnLt)

(
ntLαnLtL

ntL + αnLtL

+
ntRαnLtR

ntR + αnLtR

)

(9.11)

where 1/(nt + αnLt) is constant when the split varies. This means that finding the split
minimizing (9.11) is equivalent to finding the split minimizing

IOC
G (tL, tR) =

ntLαnLtL

ntL + αnLtL

+
ntRαnLtR

ntR + αnLtR

. (9.12)

Remark 9.8. (DIRECT LINK WITH THE TWO-CLASS FRAMEWORK) Note that the two-class
proxy of the Gini impurity decrease (9.4) is easily recovered by replacing αnLtL (resp.
αnLtR) by n′tL (resp. n′tR), the number of second class instances in tL (resp. in tR). When
generating αn of them uniformly on X , αnLt is the expectation of n′t .

As detailed Section 9.3.1, this approach suffers from the curse of dimensionality. We can
summarize the problem as follows. Note that γt, the ratio between the expected number of
(hidden) outliers and the number of normal observations in node t, is here equal to

γt =
αnLt

nt
. (9.13)

This class ratio is close to 0 for lots of nodes t, which makes unable the Gini criterion to
discriminate accurately between the (hidden) outliers and the inliers. Minimizing this criterion
produces splits corresponding to γt ≃ 0 in Figure 9.2: one of the two child nodes, say tL
contains almost all the data.

9.5.2 Adaptive approach

The solution presented Section 9.3 is to remove the uniform assumption for the abnormal class.
From the theoretical point of view, the idea is to choose in an adaptive way (w.r.t. the volume
of Xt) the number αn, which can be interpreted as the number of (hidden) outliers. Recall
that neither n nor α is observed in the One-Class-Model(n, α). Doing so, we aim at avoiding
αnLt ≪ nt when Lt is too small. Namely, with γt defined in (9.13), we aim at avoiding γt ≃ 0
when Lt ≃ 0. The idea is to consider α(Lt) and n(Lt) such that α(Lt) → 1, n(Lt) → ∞
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when Lt → 0. We then define the one-class adaptive proxy of the impurity decrease by

IOC−ad
G (tL, tR) =

ntLα(Lt) · n(Lt) · LtL

ntL + α(Lt) · n(Lt) · LtL

+
ntRα(Lt) · n(Lt) · LtR

ntR + α(Lt) · n(Lt) · LtR

. (9.14)

In other words, instead of considering one general model One-Class-Model(n, α) defined in
Section 9.5.1, we adapt it to each node t, considering One-Class-Model(n(Lt), α(Lt)) before
searching the best split. We still consider the N normal observations as a realization of this
model. When growing the tree, using One-Class-Model(n(Lt), α(Lt)) as Lt becomes close to
zero allows to maintain a high expected proportion of outliers in the node to be split minimizing
(9.14). Of course, constraints have to be imposed to ensure consistency between these models.
Recalling that the number N of normal observations is a realization of N following a Binomial
distribution with parameters (n, 1− α), a first natural constraint on

(
n(Lt), α(Lt)

)
is

(1− α)n =
(
1− α(Lt)

)
· n(Lt) for all t, (9.15)

so that the expectation of N remains unchanged.

Remark 9.9. In our adaptive model One-Class-Model(n(Lt), α(Lt)) which varies when we
grow the tree, let us denote by N(Lt) ∼ Bin

(
n(Lt), 1 − α(Lt)

)
the r.v. ruling the number

of normal data. The number of normal observations N is still viewed as a realization of
it. Note that the distribution of N(Lt) converges in distribution to P

(
(1 − α)n

)
a Poisson

distribution with parameter (1− α)n when Lt → 0, while the distribution Bin
(
n(Lt), α(Lt)

)

of the r.v. n(Lt)−N(Lt) ruling the number of (hidden) outliers goes to infinity almost surely.
In other words, the asymptotic model (when Lt → 0) consists in assuming that the number
of normal data N we observed is a realization of N∞ ∼ P

(
(1 − α)n

)
, and that an infinite

number of outliers have been hidden.

A second natural constraint on
(
α(Lt), n(Lt)

)
concerns on γt defined in (9.13), the ratio

between the expected number of (hidden) outliers in node t and the number of normal obser-
vations. As explained in Section 9.3.1, we do not want γt to go to zero when Lt does. Let us
say we want γt to be constant for all node t, equal to γ > 0. Typically, γ = 1 so that there is
as much expected uniform (hidden) outliers than normal data at each time we want to find the
best split minimizing (9.14). Then the second constraint is

α(Lt) · n(Lt) · Lt = γtnt = γnt := n′t. (9.16)

The quantity n′t can be interpreted as the expected number of (hidden) outliers in node t. The
constant γ is a parameter ruling the expected proportion of outliers in each node. Equations
(9.15) and (9.16) allow to explicitly determine α(Lt) and n(Lt): α(Lt) = n′t/

(
(1− α)nLt +

n′t
)

and n(Lt) =
(
(1 − α)nLt + n′t

)
/Lt. Regarding (9.14), α(Lt) · n(Lt) · LtL =

n′
t

Lt
LtL =

n′tLeb(XtL)/Leb(Xt) by (9.16) and α(Lt) · n(Lt) · LtR = n′tLeb(XtR)/Leb(Xt), so that we
recover equation (9.5).

9.6 Conclusion

Through a natural adaptation of both (two-class) splitting criteria and majority vote, this chap-
ter introduces a methodology to structurally extend RFs to the one-class setting. Our one-
class splitting criteria correspond to the asymptotic behavior of an adaptive outliers generating
methodology, so that consistency with two-class RFs seems respected. Strong empirical per-
formance attests the relevance of this methodology.
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FIGURE 9.6: Performances of the algorithms on each dataset in the unsupervised framework:
ROC AUCs are on the top, Precision-Recall AUCs in the middle and processing times are
displayed below (for each dataset and algorithm). The x-axis represents the datasets.

9.7 Further details on benchmarks and unsupervised results

Recall that for each algorithm, 10 experiments on random training and testing datasets are
performed. Averaged ROC and Precision-Recall curves AUC are summarized in Table 9.2. For
the experiments made in an unsupervised framework (meaning that the training set is polluted
by abnormal data), the anomaly rate is arbitrarily bounded to 10% max (before splitting data
into training and testing sets).

TABLE 9.3: Results for the unsupervised setting

Dataset OneClassRF iForest OCRFsampling OCSVM LOF Orca LSDA RFC

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR
adult 0.625 0.161 0.644 0.234 NA NA 0.622 0.179 0.546 0.100 0.593 0.179 0.633 0.204 NA NA
annthyroid 0.842 0.226 0.820 0.310 0.992 0.869 0.688 0.193 0.731 0.188 0.561 0.132 0.762 0.246 NA NA
arrhythmia 0.698 0.485 0.746 0.418 0.704 0.276 0.916 0.630 0.765 0.468 0.741 0.502 0.733 0.393 0.711 0.309
forestcover 0.845 0.044 0.882 0.062 NA NA NA NA 0.550 0.017 0.696 0.045 0.816 0.072 NA NA
http 0.984 0.120 0.999 0.685 NA NA NA NA NA NA 0.998 0.402 0.277 0.074 NA NA
ionosphere 0.903 0.508 0.888 0.545 0.879 0.664 0.956 0.813 0.956 0.789 0.929 0.917 0.915 0.773 0.943 0.725
pendigits 0.453 0.085 0.463 0.077 0.999 0.993 0.366 0.066 0.491 0.086 0.495 0.086 0.513 0.091 NA NA
pima 0.708 0.229 0.743 0.205 0.790 0.296 0.706 0.226 0.670 0.137 0.585 0.170 0.686 0.190 0.505 0.091
shuttle 0.947 0.491 0.997 0.979 NA NA 0.992 0.904 0.526 0.115 0.655 0.320 0.686 0.218 NA NA
smtp 0.916 0.400 0.902 0.005 NA NA 0.881 0.372 0.909 0.053 0.824 0.236 0.888 0.398 NA NA
spambase 0.830 0.300 0.799 0.303 0.970 0.877 0.722 0.192 0.664 0.120 0.603 0.210 0.731 0.229 0.684 0.134
wilt 0.520 0.053 0.443 0.044 0.966 0.554 0.316 0.036 0.627 0.069 0.441 0.029 0.530 0.053 0.876 0.472

average: 0.773 0.259 0.777 0.322 0.900 0.647 0.717 0.361 0.676 0.195 0.677 0.269 0.681 0.245 0.744 0.346
cum. train time: 61s 70s NA NA NA 2432s 72s NA
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ROC and PR curves:

FIGURE 9.7: ROC and PR curves for OneClassRF (novelty detection framework)

FIGURE 9.8: ROC and PR curves for OneClassRF (unsupervised framework)
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FIGURE 9.9: ROC and PR curves for IsolationForest (novelty detection framework)

FIGURE 9.10: ROC and PR curves for IsolationForest (unsupervised framework)
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FIGURE 9.11: ROC and PR curves for OCRFsampling (novelty detection framework)

FIGURE 9.12: ROC and PR curves for OCRFsampling (unsupervised framework)



168 Chapter 9. One Class Splitting Criteria for Random Forests

FIGURE 9.13: ROC and PR curves for OCSVM (novelty detection framework)

FIGURE 9.14: ROC and PR curves for OCSVM (unsupervised framework)
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FIGURE 9.15: ROC and PR curves for LOF (novelty detection framework)

FIGURE 9.16: ROC and PR curves for LOF (unsupervised framework)
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FIGURE 9.17: ROC and PR curves for Orca (novelty detection framework)

FIGURE 9.18: ROC and PR curves for Orca (unsupervised framework)



Chapter 9. One Class Splitting Criteria for Random Forests 171

FIGURE 9.19: ROC and PR curves for LSAD (novelty detection framework)

FIGURE 9.20: ROC and PR curves for LSAD (unsupervised framework)
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FIGURE 9.21: ROC and PR curves for RFC (novelty detection framework)

FIGURE 9.22: ROC and PR curves for RFC (unsupervised framework)



CHAPTER 10
Conclusion, limitations & perspectives

In this thesis, three different problems have been addressed. Building scoring functions, gain-
ing in accuracy on low probability regions, and evaluating algorithms in the case of unlabeled
data.

For the first problem, two solutions have been proposed. The excess-mass based performance
criterion has been defined and used in a empirical risk minimization framework. While theoret-
ical guaranties have been derived (resp. exists) for scoring functions produced by optimizing
the excess-mass (resp. mass-volume) curves, more work is needed for them to achieve effi-
ciency in practice. In particular, the choice of the functional class on which the criterion is
optimized (which is typically the class of stepwise functions on very simple sets) is challeng-
ing. This class has to be rich enough to provide a good approximation while simple enough
to control the convergence rate and the algorithmic complexity, which is a hard trade-off to
achieve when no information on the underlying distribution is used. The second solution is
based on random forests. It consists in extending naturally standard splitting criteria to the
one-class setting. This structural generalization of random forests to one-class classification
produces competitive scoring functions with respect to many state-of-the-art anomaly detec-
tion algorithms commonly used in industrial setups. Its principal limitations, which also are
perspectives, lie in the fact that this is essentially a heuristic method, and it lacks of theoretical
guaranties.

For the accuracy gain on low probability regions, tools borrowed from multivariate extreme
value theory have been used to defined a possibly sparse representation of the dependence
structure of extremes, and the associated scoring functions. Besides, non-asymptotic bounds
have been derived on the estimation procedure. An intermediate step was to study the non-
asymptotic behavior of the stable tail dependence function, a functional characterizing the
extreme dependence structure. Novel bounds have been derived to control the error of its
natural empirical version, as well as a methodology for deriving VC-type bounds on low-
probability regions. Moreover, the sparsity pattern in multivariate extremes we exhibit can be
used as a preprocessing step to scale up multivariate extreme values modeling to high dimen-
sional settings, which is currently one of the major challenges in multivariate EVT. Because
no assumption is made on the underlying distribution other than the existence of the STDF,
the non-asymptotic bounds on the estimation procedure contain separated bias terms corre-
sponding to the (distribution-dependent) convergence speed to the asymptotic behavior, which
are not controlled explicitly. This prevents us to choose in an adaptive way the parameters of
our representation of extreme dependence. Since these parameters cannot be chosen by cross-
validation as no labeled data is available in our setting, default parameters have to be chosen.
While results seem accurate in our benchmarks, this is a limitation of this approach. A possi-
ble future direction is to make an additional hypothesis of ‘second order regular variation’ (see
e.g. de Haan & Resnick, 1996) in order to express these bias terms, and possibly to refine the
results.
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For the evaluation of anomaly detection algorithms in the case of unlabeled data, the theory
is built on the excess-mass and mass-volume curves. As these criterion have originally been
introduced to build scoring functions using empirical risk minimization, no empirical study has
been made in the literature on their ability to discriminate between existing scoring functions.
To this end, we present a benchmark showing that EM and MV criteria are able to recover
the ranking induced by ROC/PR over scoring functions, when labels are hidden. Besides, as
these curves can only be estimated in small dimensions (they involve volume computations),
a methodology based on feature sub-sampling and aggregating is described and tested. It
allows an extension of the use of these criteria to high-dimensional datasets. It also solves
major drawbacks inherent to standard EM and MV curves, allowing e.g. features selection
in the unsupervised setting. This heuristic (random projections and aggregating) works well
in practice, but suffers from a lack of theoretical guaranties. Note that it does not evaluate a
fixed scoring function, but multiple scoring functions (output by the algorithm to be evaluated)
defined on different sub-spaces with the same dimension. Thus, it could be of great interest to
study if the quantity estimated here really converges when the number of random projections
go to infinity, and to find out if the limit somehow corresponds to a scoring function defined
on the entire input space. In particular, this may allow to choose in an optimal way the sub-
sampling parameters.



CHAPTER 11
Résumé des contributions en Français

11.1 Introduction

Une anomalie, du grec ανωµαλια, aspérité, irrégularité, "non-semblable" (an-homalos),
désigne un écart par rapport à une certaine normalité, par rapport à un comportement at-
tendu. On appelle anomalie l’objet qui induit cet espace, l’observation qui s’écarte de la
normalité. Dans beaucoup de domaines, la situation suivante se présente: un expert cherche à
prédire un phénomène sur la base d’observations antérieures. Le cas le plus fondamental est
lorsque l’on veut prédire certaines caractéristiques binaires d’observations nouvelles, compte
tenu des précédentes. Par exemple, on peut penser à un médecin voulant prédire si un nou-
veau patient présente ou non une certaine pathologie, en utilisant les données des patients
précédents (comme l’âge, l’histoire, le sexe, la pression artérielle) associées à leur véritable
étiquette/label: avoir ou non la pathologie en question. Ce cas est un exemple de classifica-
tion binaire, où le médecin cherche à trouver une règle pour prédire l’étiquette d’un nouveau
patient (ce dernier étant caractérisé par son dossier médical, contenant toutes les mesures qui
lui ont été faites). Cette règle est appelée un classifieur et doit être construite, apprise, sur des
dossiers médicaux précédents. Intuitivement, le classificateur prédit le même diagnostic pour
des dossiers médicaux similaires, dans un sens qui doit être appris avec précision.

On peut distinguer deux cas. Si les étiquettes des patients antérieurs sont connues (porteur ou
non de la pathologie), on dit que la tâche de classification est supervisée. Si les étiquettes de
ces données d’entrainement sont inconnues, la classification est dite non-supervisée. Suivant
notre exemple, le médecin doit trouver deux formes (ou cluster) distinctes dans les données,
correspondant aux deux étiquettes, "en bonne santé" - "malade", formes qui contiennent cha-
cune des dossiers de patients similaires.

La détection d’anomalies survient lorsqu’une étiquette est fortement sous-représentée dans
les données d’entrainement, par exemple si très peu de patients ont la pathologie dans les
données d’entrainement. Ainsi, la détection d’anomalies supervisée se résume à la clas-
sification supervisée de classes fortement déséquilibrées. En ce qui concerne la détection
d’anomalies non supervisée (également appelée simplement détection d’outliers), elle sup-
pose généralement que la base de données a un modèle "normal" caché, et les anomalies sont
des observations qui s’écartent de ce modèle. Le médecin veut trouver des dossiers médicaux
qui s’écartent de la grande majorité de ceux de ses patients précédents. Sa tâche est en quelque
sorte simplifiée s’il sait que tous ses patients antérieurs sont en bonne santé: il est plus facile
pour lui d’apprendre le modèle "normal", c’est-à-dire le dossier médical typique d’un patient
en bonne santé, à confronté avec les dossiers médicaux de ses nouveaux patients. Ce cadre est
celui de la détection de nouveauté – également appelé classification à une classe ou détection
d’anomalies semi-supervisées: les données d’entraînement ne contiennent que des instances
normales.
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Ce résumé introductif est organisé de la façon suivante. Section 11.2, la détection d’anomalies
est formellement introduite, ainsi que la notion de fonction de score. Deux critères sur la qual-
ité d’une fonction de score sont ensuite présentés section 11.3. La section 11.4 se concentre sur
la théorie des valeurs extrêmes (TVE) pour gagner en précision sur les régions extrêmes. Après
avoir introduit la STDF (stable tail deviation function) représentant la structure de dépendance
des événements rares (section 11.4.1), on montre que la théorie des extrêmes multivariées peut
être utile pour produire des fonctions de score précise sur les régions de faible probabilité (sec-
tion 11.4.2). La section 11.5 regroupe deux contributions de nature heuristique portant d’une
part sur l’évaluation / la sélection d’algorithmes de détection d’anomalies non supervisés (sec-
tion 11.5.1) et d’autre part sur l’extension des forêts aléatoires à la classification à une classe
(section 11.5.2). La section 11.6 présente les contributions relatives à la librairie open-source
scikit-learn. La section 11.7 énumère les productions scientifiques et conclut.

Notations. A travers ce document, N désigne l’ensemble des entiers naturels, R and R+

désignent respectivement l’ensemble des nombres réels et celui des nombres réels positifs.
Les ensembles sont généralement écrit en lettre calligraphiques comme G, et |G| désigne le
nombre d’éléments dans G.

Les vecteurs sont écrits en minuscules et en gras. Pour un vecteur x ∈ Rd et i ∈ {1, . . . , d},
xi désigne la ieme composante de x. Le produit scalaire entre deux vecteurs est noté 〈·, ·〉. ‖ · ‖
désigne une norme arbitraire (sur des vecteurs ou sur des matrices) et ‖ · ‖p la norme Lp.

Au long de cette thèse, P[A] représente la probabilité de l’évènement A ∈ Ω, l’espace de prob-
abilité sous-jacent étant (Ω,F ,P). Nous utilisons la notation E[X] pour indiquer l’espérance

de la variable aléatoire X . La notation X
d
= Y signifie que X et Y sont égales en distribu-

tion et Xn
d→ Y signifie que (Xn) converge vers Y en distribution. Nous utilisons souvent

l’abréviation X1:n pour désigner un échantillon i .i .d . (X1, . . . ,Xn).

11.2 Détection d’anomalies, ranking d’anomalies et fonctions de
scores

D’un point de vue probabiliste, il existe différentes façons de modéliser les comportements
normaux et anormaux, ce qui conduit à différentes méthodologies. Un modèle probabiliste
naturel consiste à supposer deux processus de génération différents pour les données normales
et anormales. Les données normales (resp. données anormales) sont générées selon une dis-
tribution F (respectivement G). La distribution sous-jacente générale est alors un mélange de
F et G. L’objectif est de déterminer si une nouvelle observation x a été générée à partir de
F ou de G. Le meilleur moyen de résoudre théoriquement ce problème est le test du rapport
de vraisemblances, également appelé test de Neyman-Pearson. Si (dF/dG)(x) > t avec un
certain seuil t > 0, alors x a été généré selon F . Sinon, x a été généré selon G. Cela re-
vient à estimer l’ensemble de niveau de densité {x, (dF/dG)(x) > t} (Schölkopf et al., 2001;
Steinwart et al., 2005; Scott & Nowak, 2006; Vert & Vert, 2006). Comme les anomalies sont
très rares, leur structure ne peut être observée dans les données, en particulier leur distribution
G. Il est courant et commode de remplacer G dans le problème ci-dessus par la mesure de
Lebesgue, de sorte qu’il se résume à l’estimation du niveau de densité de F . (Schölkopf et al.,
2001; Scott & Nowak, 2006; Vert & Vert, 2006).

Cela revient à supposer que les anomalies sont uniformément réparties sur le support de la
distribution normale. Cette hypothèse est donc implicitement faite par une majorité d’ouvrages
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sur la détection de nouveauté / classification à une classe. Nous observons les données dans
Rd à partir de la classe normale seulement, avec une distribution sous-jacente F et avec une
densité f : Rd → R. Le but est d’identifier les caractéristiques de cette classe normale, telles
que son support {x, f(x) > 0} ou un certain niveau de densité fixé {x, f(x) > T} avec t > 0
près de 0.

La détection d’anomalies non supervisée est souvent considérée comme un problème de clas-
sification à une classe, où les données d’entraînement sont polluées par quelques éléments de
la classe anormale: elle fait appel à des algorithmes à une classe robustes aux anomalies.

Une idée naturelle pour estimer les ensembles de niveau de densité est de calculer une es-
timation de la densité et de considérer les ensembles de niveau associés (Tsybakov, 1997;
Cuevas & Fraiman, 1997; Baillo et al., 2001; Baillo, 2003; Cadre, 2006; Rigollet & Vert,
2009; Mason & Polonik, 2009). La densité est généralement estimée à l’aide d’un estimateur
à noyau non paramétrique ou d’un estimateur de maximum de vraisemblance à partir d’une
famille paramétrique de fonctions. Mais ces méthodes ne s’adaptent pas bien à la grande di-
mension. D’une certaine manière, ces méthodes cherchent à capturer plus d’information que
nécessaire pour la tâche d’estimation d’ensemble de niveau, comme les propriétés locales de
la densité qui sont inutiles pour cette tache. En effet, il s’avère que pour toute transforma-
tion croissante T , les ensembles de niveau de T ◦ f sont exactement ceux de f . Ainsi, il
suffit d’estimer n’importe quel représentant de la classe des transformées croissantes de f ,
pour obtenir des estimés d’ensemble de niveau. Intuitivement, il suffit d’estimer le pré-ordre
(le scoring) induit par f sur Rd. Définissons une fonction de score comme toute fonction
mesurable s : Rd → R+ intégrable par rapport à la mesure de Lebesgue Leb(.) et S l’espace
de toutes les fonctions de score. Toute fonction de score définit un pré-ordre sur Rd et donc
un classement sur un ensemble de nouvelles observations. Ce classement peut être interprété
comme un degré d’anormalité, plus s(x) est petit, plus x est normal. Notons que la plupart
des algorithmes de détection d’anomalies renvoient plus qu’une étiquette binaire, normale /
anormale. Ils renvoient une fonction de score, qui peut être convertie en prédiction binaire,
généralement en imposant un seuil basé sur sa distribution statistique.

Supposons que nous voulons apprendre une fonction de score s dont le pré-ordre induit est
"proche" de celui de f , ou de manière équivalente dont les ensembles de niveau induits sont
proches de ceux de f . Le problème est de transformer cette notion de proximité en critère
C, les fonctions de score optimales s∗ étant alors définies comme celles qui optimisent C.
Dans le cadre de l’estimation de la densité, la différence uniforme ‖f − f̂‖∞ est un critère
commun pour évaluer la qualité de l’estimation. Nous aimerions un critère similaire, mais
qui est invariant par transformé croissante de f̂ . En d’autres termes, le critère doit être défini
de telle sorte que la collection d’ensemble de niveau d’une fonction de score optimale s∗(x)
coïncide avec celle relative à f , et toute transformation croissante de la densité devrait être
optimale au sens de C. Plus formellement, nous allons considérer CΦ(s) = ‖Φ(s)−Φ(f)‖ (au
lieu de ‖s − f‖) avec Φ : R → R+ vérifiant Φ(T ◦ s) = Φ(s) pour toute fonction de score s
et transformation croissante T . Ici Φ(s) désigne soit la courbe masse-volume MVs de s, soit
sa courbe en excès-masse EMs, définies dans la section suivante.

Ce critère qui mesure la qualité d’une fonction de score est alors un outil pour construire /
apprendre une bonne fonction de score. Selon le paradigme de la minimisation du risque
empirique, une fonction de score est construite en optimisant une version empirique Cn(s) du
critère sur un ensemble adéquat de fonctions de score S0 de complexité contrôlée (par exemple
une classe de dimension VC finie).

La section suivante décrit deux critères fonctionnels au vue de la nature globale du problème,
tout comme les courbes ROC (Receiver Operating Characteristic) et PR (Precision-Recall), et
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qui sont admissibles par rapport aux exigences énumérées ci-dessus. Ces critères fonctionnels
étendent en quelque sorte le concept de la courbe ROC au cadre non-supervisé.

Remarque 1. Terminologie: détection d’anomalies, ranking d’anomalies.
À proprement parler, les critères que nous recherchons sont des critères de ranking
d’anomalies, de la même manière que la courbe ROC est essentiellement un critère de rank-
ing bipartite. En pratique comme mentionné ci-dessus, tous les algorithmes de détection
d’anomalies sont candidats à la tâche de ranking d’anomalie. Ils produisent tous une fonc-
tion de score, même ceux qui traitent à l’origine du cadre de "classification des anomalies",
c’est à dire cherchent à être optimal sur un seul ensemble de niveau ou pour un taux de faux
positifs fixe. Dans la littérature, la terminologie "détection d’anomalies" est largement util-
isée, au lieu de la terminologie plus précise de "ranking d’anomalies". Par exemple, Liu et al.
(2008) écrit "Le but de la détection d’anomalies est de fournir un ranking qui reflète le de-
gré d’anomalie". Dans le cadre de ce travail, nous optons de même pour la convention que
la détection d’anomalies se réfère au ranking d’anomalies: si les labels sont disponibles pour
l’étape d’évaluation, l’objectif est de maximiser l’aire sous la courbe ROC. Si aucune donnée
labelisée n’est disponible, l’objectif est de maximiser les critères non-supervisées définis dans
la section suivante.

11.3 M-estimation et critères de performance pour les fonctions
de scores

Cette section est basée sur le travail Goix et al. (2015c). Nous fournissons un bref aperçu du
critère de la courbe masse-volume introduit dans Clémençon & Jakubowicz (2013), qui est
basé sur la notion d’ensembles de volume minimum. Nous exposons ensuite les principaux
inconvénients de cette approche et proposons un autre critère, la courbe d’excès de masse.

11.3.1 Ensembles à volume minimal

La notion d’ensemble de volume minimal (Polonik (1997); Einmahl & Mason (1992)) a été
introduite pour décrire des régions où une variable aléatoire multivariée X ∈ Rd se trouve
avec très grande ou très petite probabilité. Soit α ∈ (0, 1), un ensemble de volume minimal
Γ∗α de masse au moins α est une solution du problème de minimisation sous contrainte

min
Γ borelien

Leb(Γ) tel que P(X ∈ Γ) ≥ α, (11.1)

le minimum étant pris sur tous les sous-ensembles mesurables Γ de Rd. On peut montrer que
chaque niveau de densité est un ensemble de volume minimal pour une certaine masse et que
la réciproque est vraie si la densité n’a pas de partie plate. Dans le reste de cette section, on
suppose que F a une densité f(x) par rapport à la mesure de Lebesgue sur Rd satisfaisant les
hypothèses suivantes:

A1 La densité f est bornée.

A2 La densité f n’a pas de partie plate: ∀c ≥ 0, P{f(X) = c} = 0 .

Sous les hypothèses précédentes, pour n’importe quel α ∈ (0, 1), il existe un unique ensemble
de volume minimal Γ∗α, dont la masse est égale à α. La fonction quantile (généralisée) est
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alors définie par:
∀α ∈ (0, 1), λ∗(α) := Leb(Γ∗α).

En outre, l’application λ∗ est continue sur (0, 1) et uniformément continue sur [0, 1− ǫ] pour
tout ǫ ∈ (0, 1) - quand le support de F est compact, la continuité uniforme est valable sur
l’intervalle fermé [0, 1].

Les estimés Γ̂∗α des ensembles de volume minimal sont construits en remplaçant la distribution
de probabilité inconnue F par sa version empirique Fn = (1/n)

∑N
i=1 δXi et en restraignant

l’optimisation à une collection A de sous-ensembles boréliens de Rd. A est supposée suff-
isamment riche pour inclure tous les ensembles de niveau de la densité f , ou au moins des
approximations raisonnables de ceux-ci.

Dans Polonik (1997), des résultats limites sont prouvés pour le processus quantile empirique
généralisé {Leb(Γ̂∗α) − λ∗(α)} – sous l’hypothèse en particulier que A est une classe de
Glivenko-Cantelli pour F . Dans Scott & Nowak (2006), il est proposé de remplacer le niveau
α par α−φn où φn joue le rôle d’un paramètre de tolérance (du même ordre que le supremum
supΓ∈A |Fn(Γ) − F (Γ)|), la complexité de la classe A étant contrôlée par sa dimension VC,
afin d’établir des bornes. La version statistique du problème du volume minimal est alors

min
Γ∈A

Leb(Γ) subject to Fn(Γ) ≥ α− φn.

La classe A de sous-ensembles boréliens de Rd offre dans l’idéal des avantages statistiques et
computationnels, permettant une recherche rapide tout en étant suffisamment complexe pour
capturer la géométrie des ensembles de niveau de la densité – en d’autre termes, le "biais de
modèle" infΓ∈A Leb(Γ∆Γ∗α) doit être petit.

11.3.2 La courbe Masse-Volume

Soit s ∈ S une fonction de score. Comme défini dans Clémençon & Jakubowicz (2013);
Clémençon & Robbiano (2014), la courbe masse-volume de s est le tracé de la fonction

MVs : α ∈ (0, 1) 7→ MVs(α) = λs ◦ α−1s (α),

où H−1 désigne la pseudo-inverse de n’importe quelle fonction de répartition H : R → (0, 1)
et où αs et λs sont définis par

αs(t) := P(s(X) ≥ t),

λs(t) := Leb({x ∈ Rd, s(x) ≥ t}) .
(11.2)

Ceci induit un ordre partiel sur l’ensemble de toutes les fonctions de score: s est préférée
à s′ si MVs(α) ≤ MVs′(α) pour tout α ∈ (0, 1). De plus, la courbe masse-volume reste
inchangée lors de l’application d’une transformation croissante sur s. On peut prouver que
MV ∗(α) ≤ MVs(α) pour tout α ∈ (0, 1) et toute fonction de score s, où MV ∗(α) est la
valeur optimale du problème de minimisation sous contrainte (11.1), à savoir

MV ∗(α) = Leb(Γ∗α) = min
Γ mes.

Leb(Γ) subject to P(X ∈ Γ) ≥ α . (11.3)
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Sous les hypothèses A1 et A2, on peut montrer que la courbe MV ∗ est bien une courbe masse
volume, associée à (toute transformation croissante de) la densité f à savoir: MV ∗ = MVf .

L’objectif est alors de construire une fonction de score ŝ en fonction des données
d’entraînement X1, ...Xn telle que MVŝ soit minimale partout, c’est-à-dire minimisant
‖MVŝ −MV ∗‖∞ := supα∈[0,1] |MVŝ(α)−MV ∗(α)|.

x

f(x)

Q(f, α)

Γ∗α

MV ∗(α)

α

FIGURE 11.1: Masse-Volume au niveau α

Pour ce faire, il faut d’abord estimer une collection d’ensembles de volume minimal relat-
ifs aux masses cibles 0 < α1 < . . . < αK < 1 formant une subdivision de (0, 1) sur la
base des données d’entrainement afin de définir s =

∑
k 1{x∈Γ̂∗

αk
}. L’analyse se fait sous

des hypothèses adéquates (relatives à G, au périmètre de Γ∗αk
et au pas de la subdivision en

particulier) et pour un choix approprié de K = Kn. Cependant, par construction, les vitesse
d’apprentissage sont plutôt lentes (de l’ordre n−1/4) et ne peuvent pas être établies lorsque le
support n’est pas borné.

Les quatre principaux inconvénients de ce critère de courbe masse-volume sont les suivants.

1) Lorsqu’il est utilisé comme critère de performance, la mesure de Lebesgue d’ensembles
pouvant être très complexes doit être calculée.

2) Lorsqu’il est utilisé comme critère de performance, il n’existe pas de méthode directe
pour comparer les courbes MV puisque l’aire sous la courbe est potentiellement infinie.

3) Lorsqu’il est utilisé comme critère d’apprentissage, il produit des ensembles de niveau
qui ne sont pas nécessairement imbriqués, puis des fonctions de score imprécises.

4) Lorsqu’il est utilisé comme un critère d’apprentissage, les taux d’apprentissage sont
plutôt lents (de l’ordre n−1/4), et ne peuvent pas être établis dans le cas d’un support
non borné.

Dans la section suivante, et comme contribution de cette thèse, un autre critère fonctionnel
est proposé, obtenu en échangeant objectif et contrainte dans (11.1). Les inconvénients du
critère de la courbe masse-volume sont résolus à l’exception du premier, et l’on montre que
l’optimisation d’une version discrète empirique de cette mesure de performance donne des
fonctions de score avec des taux de convergence de l’ordre OP(1/

√
n). En outre, les résultats

peuvent être étendus à la situation où le support de la distribution F n’est pas compact. De
plus, lorsqu’on relaxe l’hypothèse faite dans l’analyse de la courbe masse-volume que tous
les ensembles de niveau de f sont inclus dans notre classe de minimisation A, un contrôle du
biais du modèle est établi. Enfin, nous déduisons des propriétés théoriques (non statistiques)
vérifiées par ce critère, ce qui corrobore sa qualité de métrique sur les ensembles de niveau
contenus dans les fonctions de score.
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11.3.3 Le critère d’excès de masse

Nous proposons un autre critère de performance qui s’appuie sur la notion de d’excès de masse
et d’ensemble de contours de densité, comme introduits dans la contribution Polonik (1995).
L’idée principale est de considérer une formulation lagrangienne d’un problème de minimisa-
tion sous contrainte, obtenu en échangeant la contrainte et l’objectif dans (11.1): pour t > 0,

max
Ω borelien

{P(X ∈ Ω)− tLeb(Ω)} . (11.4)

On désigne par Ω∗t une solution de ce problème. Cette formulation offre certains avantages à
la fois computationnels et théoriques: en laissant (une version discrétisée) du multiplicateur
lagrangien t augmenter de 0 à l’infini, on peut facilement obtenir des solutions à la contrepartie
empirique de (11.4) formant une suite imbriquée d’ensembles, évitant ainsi une dégradation
du taux de convergence – due à la transformation des solutions empiriques pour forcer la
monotonie.

La courbe d’excès de masse optimale d’une distribution de probabilité F est définie comme
le graphe de la fonction

t > 0 7→ EM∗(t) := max
Ω borelian

{P(X ∈ Ω)− tLeb(Ω)}.

Avec les notations précédentes, nous avons: EM∗(t) = P(X ∈ Ω∗t ) − tLeb(Ω∗t ) pour tout
t > 0. Remarquons que EM∗(t) = 0 pour tout t > ‖f‖∞ := supx∈Rd |f(x)|. La courbe
d’excès de masse de s ∈ S par rapport à la distribution de probabilité F d’une variable
aléatoire X est le graphe de la fonction

EMs : t ∈ [0,∞[ 7→ sup
A∈{(Ωs,l)l>0}

{P(X ∈ A)− tLeb(A)}, (11.5)

où Ωs,t = {x ∈ Rd, s(x) ≥ t} pour tout t > 0.

On peut également écrire EMs en termes de λs et αs définis en (11.2), EMs(t) =
supu>0 αs(u) − tλs(u). Enfin, sous l’hypothèse A1, nous avons EMs(t) = 0 pour tout
t > ‖f‖∞.

x

f(x)

t

Ω∗t

EM(t)

Figure 2: Excess-Mass curve

Maximiser EMs peut être vue comme trouver une collection de sous-ensembles (Ω∗t )t>0 avec
une masse maximale lorsqu’ils sont pénalisés par leur volume de façon linéaire. Une fonction
de score optimale est alors n’importe quel s ∈ S admettant Ω∗t ’s comme ensembles de niveau,
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par exemple une fonction de score de la forme

s(x) =

∫ +∞

t=0
1x∈Ω∗

t
a(t)dt,

avec a(t) > 0 (notons que s(x) = f(x) pour a ≡ 1). La fonction EMs est décroissante sur
(0,+∞), à valeurs dans [0, 1] et satisfait, EMs(t) ≤ EM∗(t) pour tout t ≥ 0. De plus, pour
t ≥ 0 et pour n’importe quel ǫ > 0, nous avons

inf
u>0

ǫLeb({s > u}∆ǫ{f > t}) ≤ EM∗(t)− EMs(t)

≤ ‖f‖∞ inf
u>0

Leb({s > u}∆{f > t})

avec {s > u}∆ǫ{f > t} := {f > t + ǫ} \ {s > u} ⊔ {s > u} \ {f > t − ǫ}.
Ainsi la quantité EM∗(t)− EMs(t) mesure avec quelle qualité les ensembles de niveau de s
peuvent-il approchés ceux de la densité sous-jacente. Sous des hypothèse raisonnables, (voir
Goix et al. (2015c), Prop.1), nous avons aussi pour ǫ > 0,

sup
t∈[ǫ,‖f‖∞]

|EM∗(t)− EMs(t)| ≤ C inf
T∈T

‖f − T ◦ s‖∞

où l’infimum est pris sur l’ensemble T de toutes les transformations croissantes mesurables
T : R+ → R+. Les inégalités précédentes révèlent que ‖EM∗−EMs‖∞ peut être interprété
comme une pseudo distance, soit entre les ensembles de niveau de s et ceux de la densité
sous-jacente f , soit entre les pré-ordres induits par s et f .

Le concept de la courbe EM fournit un moyen simple de comparer les fonctions de score,
mais l’optimisation d’un tel critère fonctionnel est loin d’être simple. Comme proposé dans
Clémençon & Jakubowicz (2013) pour le critère MV, l’optimisation est faite sur une certaine
classe de fonctions de score, que nous espérons assez riche pour fournir une bonne approxima-
tion (biais de modèle petit) tout en étant assez simple pour contrôler le taux de convergence.
Nous considérons ici les fonctions de score de la forme

sN (x) :=

N∑

k=1

ak1x∈Ω̂tk
, avec Ω̂tk ∈ G

où G est une class VC de sous-ensembles de Rd. Nous choisissons de manière arbitraire
ak := (tk−tk+1) de telle sorte que les Ω̂tk correspondent exactement aux ensembles de niveau
tk, {s ≥ tk}. Ensuite, la maximisation du critère fonctionnel d’excès de masse s’effectue en
résolvant de manière séquentielle, pour k = 1, . . . , N ,

Ω̂tk ∈ argmax
Ω∈G

1

n

n∑

i=1

1Xi∈Ω − tkLeb(Ω).

Les solution Ω̂tk de ces problèmes d’optimisation peuvent toujours être choisies de manière
à être imbriquées (contrairement au problème d’optimisation analogue pour le critère masse-
volume). En d’autres termes, une contrainte d’inclusion peut être incorporée dans le problème
d’optimisation précédent, sans affecter la qualité de la solution obtenue. Dans le cadre du
critère masse-volume, des hypothèses sont faites stipulant que le support de la distribution
doit être compact et que la classe VC G doit contenir les ensembles de niveau de la densité f .
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Ici, nous relaxons ces hypothèses, la première en choisissant des niveaux adaptatifs tk, et la
seconde en dérivant une étude de biais.

11.4 Précision sur les régions extrêmes

11.4.1 Analyse du point de vue de la théorie des valeurs extrêmes par
l’estimation de la STDF

Cette section est basée sur l’article Goix et al. (2015b).

Rappelons que les fonctions de score sont construites en approchant les ensembles de niveau
de densité / ensembles de volume minimal de la densité "normale" sous-jacente. Comme nous
l’avons mentionné précédemment, dans le cadre de la détection d’anomalie, nous souhaitons
être précis sur des ensembles de niveau correspondant à des quantiles élevés, à savoir avec
un niveau t près de 0 – ou de manière équivalente, être précis sur des ensembles de volume
minimal avec une contrainte de masse α proche de 1.

Dans le cas univarié, supposons que nous voulons considérer le quantile d’ordre (1 − p) de
la distribution F d’une variable aléatoire X , pour une probabilité donnée de dépassement p,
c’est-à-dire xp = inf{x ∈ R, P(X > x) ≤ p}. Pour les valeurs modérées de p, une con-
trepartie empirique naturelle est xp,n = inf{x ∈ R, 1/n

∑n
i=1 1Xi>x ≤ p}. Cependant, si

p est très petit, l’échantillon fini X1, . . . , Xn ne contient pas suffisamment d’informations et
xp,n devient inutile. Ce problème devient dans le cas multivarié celui d’estimer des ensembles
de niveau de densité avec un niveau très faible ou de manière equivalente celui d’estimer les
fonctions de score associées à ces ensembles de niveau. La théorie des valeurs extrêmes traite
spécialement de ces problèmes, aussi bien dans le cadre unidimensionnel que multidimension-
nel.

Préliminaires. La théorie des valeurs extrêmes (nommée dans la suite TVE) développe des
modèles pour apprendre l’insolite plutôt que l’habituel. Ces modèles sont largement utilisés
dans les domaines de la gestion des risques comme celui de la finance, de l’assurance, des
télécommunications ou des sciences de l’environnement. Une application majeure de la TVE
est de fournir une évaluation raisonnable de la probabilité d’occurrence d’événements rares.

Pour illustrer ce point, supposons que nous voulons gérer le risque d’un portefeuille contenant
d actifs différents, X = (X1, . . . , Xd). Un but assez général est alors d’évaluer la probabilité
d’événements du type {X1 ≥ x1 or . . . or Xd ≥ xd}, pour des seuils multivariés grands
x = (x1, . . . , xd). Dans des conditions pas trop strictes sur la régularité de la distribution X,
la TVE montre que pour des seuils suffisamment importants,

P{X1 ≥ x1 or . . . or Xd ≥ xd} ≃ l(p1, . . . , pd),

où l est la STDF (stable tail dependence function) et où les pj sont les probabilités de dé-
passement marginal, pj = P(Xj ≥ xj). La fonction l caractérise la dépendance entre les
extrêmes. La distribution jointe (sur des seuils importants) peut donc être récupérée à partir
de la connaissance des distributions marginales avec la STDF l. Dans la pratique, l peut être
estimée à partir de données "modérément extrêmes", typiquement les k ‘plus grandes ’parmi
un échantillon de taille n, avec k ≪ n.
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L’estimation des pj peut s’effectuer suivant un chemin bien pavé: dans le cas univarié, la TVE
consiste essentiellement à modéliser la distribution des maxima (resp. la queue de distribution)
par un élément des familles paramétriques de Gumbel, Fréchet ou Weibull (resp. par une
distribution de Pareto généralisée).

Par contre, dans le cas multivarié, il n’y a pas de paramétrisation fini-dimensionnelle de la
structure de dépendance. Cette dernière étant caractérisée par la STDF, l’estimation de cette
fonctionnelle est l’un des principaux problèmes de la TVE multivariée. Les propriétés asymp-
totiques de la contrepartie empirique de la STDF ont été largement étudiées, voir Huang (1992);
Drees & Huang (1998); Embrechts et al. (2000); De Haan & Ferreira (2007) pour le cas bi-
varié et Qi (1997); Einmahl et al. (2012) pour le cas général multivarié sous des hypothèses de
régularité.

Cependant, aucune borne n’existe sur l’estimation non-asymptotique. La contribution résumée
dans la section suivante et publiée dans Goix et al. (2015b) dérive de telles bornes non asymp-
totiques. Nos résultats ne nécessitent aucune hypothèse autre que l’existence de la STDF.

Apprentissage de la structure de dépendance des événements rares. Les inégalités de
VC classiques visent à borner la déviation des quantités empiriques par rapport aux quantités
théoriques sur des classes d’ensemble relativement simples, appelées classes VC. Assez sou-
vent, ces classes recouvrent tout le support de la distribution sous-jacente. Cependant, lorsqu’il
s’agit d’événements rares, il est intéressant d’avoir de telles bornes sur une classe d’ensembles
qui ne couvre qu’une région de faible probabilité et contient donc (très) peu d’observations.
Cela donne des bornes plus fines, puisque seules les différences entre de très petites quantités
sont impliquées dans l’analyse. Le point de départ est l’inégalité VC énoncée ci-dessous.

Théoreme 1. Soit X1, . . . ,Xn des réalisations i .i .d . d’une variable aléatoire X, A une classe
VC de VC-dimension VA.

Considerons la classe A = ∪A∈AA, et posons p = P(X ∈ A). Alors il existe une constante
absolue C de sorte que pour tout 0 < δ < 1, avec probabilité au moins 1− δ,

sup
A∈A

∣∣∣∣∣P
[
X ∈ A

]
− 1

n

n∑

i=1

1Xi∈A

∣∣∣∣∣ ≤ C

[√
p

√
VA
n

log
1

δ
+

1

n
log

1

δ

]
.

L’idée principale est la suivante. L’estimateur empirique de la STDF est basé sur la mesure
empirique des régions "extrêmes", qui sont touchées seulement avec une faible probabilité.
Il suffit donc de borner les déviations maximales sur ces régions à faible probabilité. La clé
consiste à choisir une classe VC adaptative, qui ne couvre que ces régions là, et à dériver des
inégalités de type VC qui intègrent p, la probabilité de toucher la classe. La borne obtenue sur
l’erreur non asymptotique est alors:

Théoreme 2. Soit T un nombre positif tel que T ≥ 7
2(

log d
k + 1), δ tel que δ ≥ e−k et soit

k = k(n) une suite d’entiers strictement positifs telle que k → ∞ et k = o(n) quand n → ∞.
Alors il existe une constante absolue C telle que pour chaque n > 0, avec probabilité au moins
1− δ:

sup
0≤x≤T

|ln(x)− l(x)| ≤ Cd

√
T

k
log

d+ 3

δ
+ bias(k, n, T ),

où l est la STDF et ln sa version empirique standard. Le second terme dans la borne est un biais
issu de la nature asymptotique de l.
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Dans cette section, nous avons introduit et étudié, dans un cadre non-paramétrique, une fonc-
tionnelle particulière caractérisant la structure de dépendance des extrêmes. Une autre carac-
térisation pratique (non paramétrique) de cette dépendance dans le cadre de la TVE multivariée
est la mesure angulaire qui fournit des informations directes sur les "directions" probables des
extrêmes, c’est-à-dire la contribution relative de chaque coordonnée dans les "grandes" obser-
vations.

Dans de nombreuses applications, il est plus commode de travailler avec la mesure angulaire
elle-même. Cette dernière donne des informations plus directes sur la structure de dépen-
dance et est capable de refléter des propriétés structurelles (par exemple la sparsité/parcimonie
comme détaillé ci-dessous) qui n’apparaîtraient pas dans les copules ou dans la STDF, ces
derniers étant des versions intégrées de la mesure angulaire. Cependant, la modélisation non
paramétrique de la mesure angulaire est confrontée à des difficultés majeures, dues à sa struc-
ture potentiellement complexe, en particulier dans un cadre de grande dimension. D’autre
part, d’un point de vue théorique, l’estimation non paramétrique de la mesure angulaire n’a été
étudiée que dans le cas bidimensionnel et dans un cadre asymptotique Einmahl et al. (2001);
Einmahl & Segers (2009). La section ci-dessous résume une nouvelle méthodologie visant à
représenter parcimonieusement la structure de dépendance des extrêmes.

11.4.2 Représentation parcimonieuse des extrêmes multivariés

Cette section résume les travaux publiés Goix et al. (2016c), ainsi que sa version longue Goix
et al. (2016b) en cours de révision.

La TVE a été intensivement utilisée en détection d’anomalies dans le cas unidimensionnelle,
voir par exemple Roberts (1999, 2000); Clifton et al. (2011, 2008); Lee & Roberts (2008).
Dans le cas multivariée, cependant, il n’existe – à notre connaissance – aucune méthode
de détection d’anomalies reposant sur la TVE multivariée. Jusqu’à présent, le cas multi-
dimensionnel n’a été abordé que par l’usage de statistiques basées sur la TVE univariée.
La raison majeure est la difficulté du passage à l’échelle des modèles multivariés avec la
dimension. Dans le présent travail, nous comblons l’écart entre la détection d’anomalies et la
TVE multivariée en proposant une méthode qui est capable d’apprendre un "profil normal"
parcimonieux des extrêmes multivariés et, en tant que tel, peut être mis en œuvre pour
améliorer la précision de tout algorithme de détection d’anomalies.

Context: Extrèmes multivariés en grande dimension. L’estimation paramétrique ou semi-
paramétrique de la structure des extrêmes multivariés est relativement bien documentée dans
la littérature, voir par exemple Coles & Tawn (1991); Fougères et al. (2009); Cooley et al.
(2010); Sabourin & Naveau (2014) et leurs références. Cependant, des hypothèses structurelles
restrictives doivent être faites, stipulant par exemple que seuls quelques sous-groupes pré-
définis de composantes peuvent être extrêmes ensemble. En outre, leur utilisation pratique
est limitée à des problèmes en dimension modérée (par exemple, d ≤ 10), sinon des choix de
modélisation simplifiés sont nécessaires – comme dans Stephenson (2009). Enfin, l’évaluation
de l’incertitude concernant les quantités produites par ces modèles est faite sous l’hypothèse
que les données d’entraînement sont "asymptotiques", au sens où l’on suppose que, quand
elles excèdent un grand seuil fixé, les données sont exactement réparties selon la distribution
limite des extrêmes . En d’autres termes, l’erreur de modélisation est ignorée.

L’estimation non-paramétrique de la mesure angulaire n’a été traitée que dans le cas bidimen-
sionnel, dans Einmahl et al. (2001); Einmahl & Segers (2009), et dans un cadre asymptotique.
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Nous allons étendre l’étude non-asymptotique sur l’estimation de la STDF (section précédente)
à la mesure angulaire des extrêmes, restreinte à une classe bien choisie d’ensembles. L’objectif
est d’apprendre une représentation de la mesure angulaire, assez simple pour contrôler la vari-
ance en grande dimension et suffisamment précise pour obtenir des informations sur les "di-
rections probables" des extrêmes. Ceci donne une première estimation non paramétrique de la
mesure angulaire en dimension quelconque, limitée à une classe de sous-cones, avec une borne
non asymptotique sur l’erreur. Notons que ce procédé peut également être utilisé comme étape
de prétraitement, dans un cadre de réduction de dimension, avant de procéder à une estima-
tion paramétrique ou semi-paramétrique qui pourrait bénéficier des informations de structure
émises lors de la première étape. De telles applications dépassent le cadre de cette thèse.

Le cadre que nous développons est non paramétrique et se trouve à l’intersection de
l’estimation de support, de l’estimation de densité et de la réduction de dimension: il con-
siste à apprendre le support d’une distribution (à partir des données d’apprentissage), qui peut
être décomposé en sous-cones, potentiellement de dimension faible et auxquels une certaine
masse est assignée.

Ceci produit une fonction de score définie sur les régions extrêmes, qui peut ainsi être ex-
ploitée pour détecter les anomalies parmi les extrêmes. En raison de sa complexité modérée -
d’ordre dn log n - cet algorithme convient au traitement de problèmes d’apprentissage à grande
échelle, et les résultats expérimentaux révèlent une performance significativement accrue sur
les régions extrêmes par rapport aux approches de détection d’anomalies standards.

Dans un large éventail de situations, on peut s’attendre à l’apparition de deux phénomènes:

1- Il y a seulement un "petit" nombre de groupes de coordonnées pouvant être extrêmes en-
semble, de sorte que seul un "petit" nombre d’hyper-cubes (ceux correspondant à ces sous-
ensembles de coordonnées) ont une masse non nulle – "petite" est relatif au nombre total de
groupes, 2d.

2- Chacun de ces groupes contient un nombre limité de coordonnées (par rapport à la dimen-
sion initiale), de sorte que les hyper-cubes correspondants (de masse non nulle) ont une petite
dimension par rapport à d.

Le but principal de ce travail est d’introduire une méthodologie pilotée par les données
pour identifier ces groupes, afin de réduire la dimension du problème et ainsi apprendre une
représentation parcimonieurse des comportements extrêmes.

Dans le cas où l’hypothèse 2- n’est pas vérifiée, une telle représentation peut tout de même
être apprise, mais perd la propriété que les hyper-cubes la supportant sont de faible dimension.

Un problème majeur est que les données réelles ne se concentrent généralement pas sur les
sous-espaces de mesure Lebesgue nulle. Ceci peut être résolu en mettant à zéro n’importe
quelle coordonnée inférieure à un seuil ǫ > 0, de sorte que "l’angle" correspondant soit affecté
à une face de dimension inférieure.

Plus formellement, les figures 11.2 et 11.3 représentent l’espace initial des données trans-
formé, résultant de la standardisation classique des marginales. Après cette transformation
non linéaire, la représentation des données extrêmes est pour sa part linéaire et apprise en
estimant la masse portée par les sous-cônes

Cα = {v ≥ 0, ‖v‖∞ ≥ 1, vj > 0 for j ∈ α, vj = 0 for j /∈ α},
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ou plus précisément, la masse de la mesure angulaire Φ sur les sous-sphères correspondantes

Ωα = {x ∈ Sd−1
∞ : xi > 0 for i ∈ α , xi = 0 for i /∈ α} = Sd−1

∞ ∩ Cα,

représentées Figure 11.2.

FIGURE 11.2: Truncated cones in 3D FIGURE 11.3: Truncated ǫ-cones in 2D

Cette estimation est faite en utilisant les sous-cones ǫ-épaissis Cǫ
α, correspondant aux sous-

sphères ǫ-épaissies Ωǫ
α, comme le montre la Figure 11.3 dans le cas de la dimension deux.

Nous obtenons ainsi un estimateur M̂ de la représentation

M = {Φ(Ωα) : ∅ 6= α ⊂ {1, . . . , d}}.

Théoriquement, retrouver le vecteur inconnu M de dimension (2d − 1) revient à peu près à
approximer le support de Φ en utilisant la partition {Ωα, α ⊂ {1, . . . , d}, α 6= ∅}, c’est-à-dire,
déterminer quels sont les Ωα qui ont une masse non nulle – et évaluer cette masse Φ(Ωα).
Cette estimation de support est potentiellement parcimonieuse – si seul un petit nombre d’Ωα

ont une masse non nulle, i.e. Phénomène 1- – et potentiellement de faible dimension – si
les dimensions des sous-sphère Ωα ayant une masse non nulle sont faibles comparées à d,
i.e. Phénomène 2-.

Détection d’anomalies. L’algorithme que nous proposons, DAMEX (Detecting Anomalies
with Extremes), apprend une représentation M̂ (éventuellement parcimonieuse et de faible
dimension) de la mesure angulaire, à partir de laquelle une fonction de score peut être définie
dans le contexte de la détection des anomalies. L’hypothèse sous-jacente est qu’une ob-
servation est potentiellement anormale si sa "direction" (après une normalisation de chaque
marginal) est particulière par rapport aux autres observations extrêmes. En d’autres termes,
si elle n’appartient pas à la représentation (parcimonieuse) M̂. Selon les expériences obtenus
dans ce chapitre, DAMEX améliore significativement les performances (en terme de précision
et de courbes ROC) dans les régions extrêmes, ce qui induit des courbes ROC plus verticales
près de l’origine.

Garanties théoriques. A partir des travaux sur l’estimation de la STDF résumés dans la sous-
section précédente 11.4.1, en particulier à partir du Théorème 1 et des idées utilisées pour
prouver le Théorème 2, nous sommes en mesure de prouver quelques garanties théoriques
relative à cette approche. Sous des hypothèses non-restrictives standards en TVE (existence
de la mesure angulaire et fonctions de répartition des marges continues), on obtient une borne
non asymptotique de la forme

sup
∅6=α⊂{1, ..., d}

|M̂(α)−M(α)| ≤ Cd

(√
1

ǫk
log

d

δ
+Mdǫ

)
+ bias(ǫ, k, n),
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avec probabilité plus grande que 1 − δ, où k = k(n) → ∞ avec k(n) = o(n) pouvant être
interprété comme le nombre de données considérées extrêmes. Le terme de biais tend vers
zéro quand n → ∞, pour tout ǫ fixé.

11.5 Approches heuristiques

Les deux contributions de cette section sont de nature heuristique et ne sont pas encore étayées
par des résultats théoriques statistiquement solides. Bien que ces travaux en cours n’aient pas
encore été publiés et seront certainement achevés dans un proche avenir, nous pensons qu’ils
ont leur place dans ce manuscrit, étant donné les nombreuses expériences numériques conva-
incantes qui ont été menées et la justification des approches promues. Ces deux contributions
abordent deux défis majeurs en détection d’anomalies:

• Comment évaluer la détection d’anomalies non supervisée en pratique?

• Comment créer des forêts aléatoires efficaces sur une seule classe de données?

Le premier point a été partiellement traité dans la section 11.3 avec les courbes MV et EM.
Cependant, ces deux critères ont été initialement introduits pour construire des fonctions de
scores via minimisation du risque empirique (ERM), et aucune étude n’a été faite sur leur
utilisation pour évaluer les fonctions de scores comme le font les critères ROC ou PR dans
le cas où des données labélisées sont disponibles. En outre, leur utilisation pour mesurer la
qualité d’une fonction de score sn implique le calcul de la mesure de Lebesgue Leb(sn ≥ u),
ce qui est très difficile quand la dimension est grande.

Les deux approches proposées sont heuristiques, et aucune garantie théorique de consistence
ou de taux de convergence n’est dérivée. Cependant, de nombreuses expériences montrent la
pertinence de ces approches.

11.5.1 Évaluer un algorithme de détection d’anomalies

Cette partie est basée sur un article de workshop (Goix, 2016) et sur un article à soumettre
(Goix & Thomas, 2016).

Lorsque suffisamment de données labélisées sont disponibles, les critères classiques basés
sur les courbes ROC (Provost et al., 1997, 1998; Fawcett, 2006) ou PR (Davis & Goadrich,
2006; Clémençon & Vayatis, 2009a) peuvent être utilisés pour comparer les performances
d’algorithmes de détection d’anomalies non supervisés. Cependant, dans de nombreuses situ-
ations, pas ou peu de données sont étiquetées. C’est dans ce cas qu’un critère alternatif pouvant
être calculé sur des données non-étiquetées trouve toute son utilité.

Alors que les courbes d’excès de masse et masse-volume ont été initialement introduites pour
construire des fonctions de score via minimisation du risque empirique (ERM), la courbe MV
a été utilisée récemment pour la calibration du SVM à une classe (Thomas et al., 2015).
Lorsque ce critère est utilisé pour attester la qualité d’une fonction de score, les volumes
induits deviennent inconnus et doivent être estimés, ce qui est difficile en grande dimension
si aucune connaissance préalable sur la forme de ces ensembles de niveau n’est disponible.
De plus, l’efficacité des courbes EM ou MV comme critères d’évaluation n’a pas encore été
étudiée. Dans cette section et en tant que contribution de cette thèse, on montre que des scores



Chapter 11. Résumé des contributions en Français 189

numériques associées aux critères EM et MV (qui ne nécessitent pas d’étiquettes) sont aptes
à discriminer avec précision les algorithmes suivants leurs performances. Une méthodologie
basée sur le sous-échantillonnage et l’agrégation de features est également décrite et testée.
Elle étend l’utilisation de ces critères à des ensembles de données de grande dimension et
résout les principaux inconvénients inhérents aux courbes EM et MV classiques.

Rappelons que les courbes MV et EM d’une fonction de score s peuvent être écrites comme

MVs(α) = inf
u≥0

Leb(s ≥ u) s.t. P(s(X) ≥ u) ≥ α (11.6)

EMs(t) = sup
u≥0

P(s(X) ≥ u) − tLeb(s ≥ u) (11.7)

pour tout α ∈ (0, 1) et t > 0. Les courbes optimales sont MV ∗ = MVf = MVT◦f et
EM∗ = EMf = EMT◦f pour toute transformation croissante T : Im(f) → R. Comme il
n’existe pas de manière triviale pour comparer deux courbes, considérons la norme ‖.‖L1(I)

avec I ⊂ R un interval. Comme MV ∗ = MVf est en dessous de MVs en tout point,
argmins ‖MVs − MV ∗‖L1(I) = argmin ‖MVs‖L1(I). Nous définissons donc CMV (s) =
‖MVs‖L1(IMV ), ce qui revient à considérer ‖MVs − MV ∗‖L1(IMV ). Etant donné que nous
sommes intéressés par les grands ensembles de niveau, un interval naturel serait par exemple
IMV = [0.9, 1]. Cependant, la courbe MV diverge en 1 quand le support est infini, ce qui nous
amène à consider arbitrairement IMV = [0.9, 0.999]. Plus la valeur de CMV (s) est petite,
meilleure est la fonction de score s. De même, nous considérons CEM (s) = ‖EMs‖L1(IEM ),

cette fois avec IEM = [0, EM−1(0.9)], où EM−1s (0.9) := inf{t ≥ 0, EMs(t) ≤ 0.9},
puisque EMs(0) est fini (égal à 1).

Comme la distribution F des données normales est généralement inconnue, les courbes MV
et EM doivent être estimées. Soit s ∈ S and X1, . . . , Xn un échantillon i.i.d. de distribution
F . Utilisons la notation Pn(s ≥ t) = 1

n

∑n
i=1 1s(Xi)≥t. Les courbes empiriques MV et EM

de s sont alors simplement définies comme la version empirique de (11.6) ou de (11.7),

M̂V s(α) = inf
u≥0

{Leb(s ≥ u) s.t. Pn(s ≥ u) ≥ α} (11.8)

ÊM s(t) = sup
u≥0

Pn(s ≥ u) − tLeb(s ≥ u) (11.9)

Enfin, nous obtenons les critères de performance empiriques relatifs à EM et MV:

ĈEM (s) = ‖ÊM s‖L1(IEM ) IEM = [0, ÊM
−1

(0.9)], (11.10)

ĈMV (s) = ‖M̂V s‖L1(IMV ) IMV = [0.9, 0.999]. (11.11)

La méthodologie pour faire passer à l’échelle l’utilisation des critères EM et MV (aux données
en grande dimension) consiste à sous-échantillonner les données d’entrainement et de test, en
utilisant un paramètre d′ contrôlant le nombre de dimensions choisies au hasard pour le calcul
du score (EM ou MV). Ce tirage se fait sans remplacement – le remplacement se fait seulement
après chaque tirage F1, . . . , Fm.

Un score partiel ĈMV
k (resp. ĈEM

k ) est calculé à chaque tirage Fk en utilisant (11.10) (resp.
(11.11)). Le critère de performance final est obtenu en moyennant ces critères partiels. Cette
méthodologie est décrite par l’algorithme 5.
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Algorithm 5 EM/MV en grande dimension: évaluation d’algorithmes de détection
d’anomalies sur des donnéees de dimension élevée

Entrées: algorithme de détection d’anomalies A, jeu de données X = (xji )1≤i≤n,1≤j≤d,
taille de sous-échantillonage d′, nombre de tirages m.
for k = 1, . . . ,m do

sélectionner aléatoirement un sous-groupe Fk de d′ coordonnées
calculer la fonction de score associée ŝk = A

(
(xji )1≤i≤n, j∈Fk

)

calculer ĈEM
k = ‖ÊM ŝk‖L1(IEM ) en utilisant (11.10) ou ĈMV

k = ‖M̂V ŝk‖L1(IMV ) en
utilisant (11.11)

end for
Sortie: critère de performance sur A:

ĈEM
high_dim(A) =

1

m

m∑

k=1

ĈEM
k (idem for MV)

Les critères EM/MV pour dimension faible et pour dimension élevée sont testés à l’aide
de trois algorithmes de détection d’anomalies classiques. Une large gamme de jeux de
données étiquetés réels est utilisée à titre de comparaison. Les expériences montrent que
lorsqu’un algorithme a de meilleures performances que d’autres sur un certain jeu de don-
nées ("meilleures" selon les AUC des courbes ROC et PR), on peut s’attendre à le retrouver
sans utiliser d’étiquettes avec une précision de 82% dans le cadre de détection de nouveauté,
et avec une précision de 77% dans le cadre non-supervisé.

11.5.2 Forêts aléatoires à une classe

Cette partie est basée sur un travail en voie de soumission (Goix et al., 2016a).

Construire des fonctions de score précises en optimisant les critères EM ou MV est très difficile
en pratique, de manière analogue à la construction de classifieurs en optimisant la courbe ROC
(Clémençon & Vayatis (2010)) dans le cadre supervisé. Il faut davantage de travail pour que
ces méthodes soient efficaces dans la pratique, en particulier au niveau du choix de la classe
d’ensembles sur lesquels l’optimisation est effectuée. En effet, cette classe doit être assez
riche pour fournir une bonne approximation tout en étant assez simple pour contrôler le taux
de convergence. Ce compromis est difficile à réaliser, en particulier en dimension élevée,
lorsqu’aucune connaissance préalable sur la forme des ensembles de niveau n’est disponible.

Dans cette section, nous proposons une approche heuristique pour construire des fonctions
de score en utilisant des forêts aléatoires (dans la suite abrégées RF pour "random forests")
(Breiman, 2001; Genuer et al., 2008; Biau et al., 2008; Biau & Scornet, 2016). Plus formelle-
ment, nous adaptons les RFs au cadre de la classification à une classe en introduisant des
critères de séparation à une classe.

Les RFs standards sont des estimateurs qui entrainent un certain nombre de classificateurs
d’arbre de décision sur différents sous-échantillons aléatoires de l’ensemble de données.
Chaque arbre est construit récursivement, selon un critère de séparation/scission basé sur une
certaine mesure d’impureté définie sur chaque noeud de l’arbre – un noeud est en fait une
cellule rectangulaire de l’espace des observations. La prédiction est faite en moyennant les
prédictions de chaque arbre. Dans le cadre de la classification (à deux classes), les prédictions
des arbres sont moyennés à travers un vote majoritaire. Peu de tentatives pour transférer l’idée
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des RFs à la classification à une classe ont déjà été faites (Désir et al., 2012; Liu et al., 2008;
Shi & Horvath, 2012). Aucun algorithme ne prolonge structurellement (sans échantillonnage
de seconde classe et sans estimateurs de base alternatifs) les RFs au cadre de la classification
à une classe.

Nous introduisons précisément une telle méthodologie. Elle s’appuie sur une adaptation na-
turelle des critères de scission à deux classes au contexte de classification à une classe, ainsi
qu’une adaptation du vote majoritaire. De plus, il s’avère que le modèle à une classe que nous
promouvons ici correspond au comportement asymptotique d’une méthode pour générer des
outliers qui s’adapte au données (plus précisement qui s’adapte au processus de croissance des
arbres, qui lui dépend des données).

Modèle à une classe de paramètres (n, α), M(n, α). Considérons un variable aléatoire
X : Ω → Rd par rapport à un espace probabilisé (Ω,F ,P). La loi de X est supposée dépendre
d’une autre variable y ∈ {0, 1}, qui vérifie P(y = 1) = 1 − P(y = 0) = α. Nous supposons
que conditionellement à y = 0, X suit une loi F , et conditionellement à y = 1, une loi G:

X | y = 0 ∼ F, P(y = 0) = 1− α,

X | y = 1 ∼ G, P(y = 1) = α.

Nous modélisons le cadre à une classe comme suit. Parmi les n observations i .i .d . nous
observons seulement celles avec y = 0 (le comportement normal), c’est-à-dire N réalisations
de (X | y = 0) où N est lui-même la réalisation d’une variable aléatoire N de loi N ∼
Bin
(
n, (1 − α)

)
, la distribution binomiale de paramètres (n, P ). Comme les outliers ne sont

pas observés, on suppose classiquement que G suit une distribution uniforme sur l’hyper-
rectangle X contenant toutes les observations, de sorte que G a une densité constante g(x) ≡
1/Leb(X ) sur X . Cette hypothèse sera supprimée dans l’approche adaptative, où aucune
distribution préalable n’est supposée pour les outliers.

On obtient alors des analogues empiriques à une classe des mesures d’impuretés à deux classes
en remplaçant les quantités relatives au comportement normal par leurs versions empiriques.
Les quantités relatives à la deuxième classe non observée (comportement anormal) sont ex-
primées naturellement en utilisant l’hypothèse de distribution uniforme.

De cette façon, notre fonction de différence d’impuretés à une classe correspond à celle à deux
classe, où les quantités empiriques de la seconde classe ont été remplacées par leur espérance
supposant une distribution uniforme.

Mais elle induit également un problème majeur: ces espérances, qui sont proportionnelles au
volume du noeud en jeu, deviennent très petites lorsqu’on descend de plus en plus profondé-
ment dans l’arbre. Dans le cadre à deux classes, le problème analogue est lorsque la seconde
classe est fortement sous-représentée au voisinage des observations.

Comme nous supposons que la deuxième classe est uniforme sur un hyper-rectangle contenant
toutes les observations, ce fait était attendu, surtout en grande dimension (malédiction de la
dimension). Quand les quantités relatives à la seconde classe sont très proches de zéro, on
observe que le critère d’impureté devient constant, indépendemment de la scission du noeud,
donc inutile.

Approche adaptative Une solution consiste à choisir de façon adaptative (par rapport au vol-
ume de chaque noeud) le nombre αn, qui peut être interprété comme le nombre d’outliers
(cachés). Rappelons que ni n ni α ne sont observés dans le modèle à une classe M(n, α) défini
ci-dessus.
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L’idée est de faire α(t) → 1, n(t) → ∞ quand le volume du noeud t tend vers zéro. En
d’autres termes, au lieu de considérer un modèle général fixe M(n, α), nous l’adaptons à
chaque noeud t, en considérant M(n(t), α(t)) avant de chercher la meilleure partition. Nous
considérons encore les N observations normales comme une réalisation de ce modèle. Lors
de la croissance de l’arbre, l’utilisation de M(n(t), α(t)) permet de maintenir une proportion
espérée non négligeable d’outliers dans le noeud à diviser, même lorsque son volume devient
très petit. Bien sûr, des contraintes doivent être imposées pour assurer la cohérence entre ces
modèles. Par exemple, rappelant que le nombre N d’observations normales est une réalisation
de N suivant une distribution binomiale de paramètres (n, 1 − α), une première contrainte
naturelle sur

(
n(t), α(t)

)
est

(1− α)n =
(
1− α(t)

)
· n(t) for all t, (11.12)

de sorte que l’espérance de N soit inchangée. Alors le modèle asymptotique (quand le vol-
ume de t tend vers 0) consiste en fait à supposer que le nombre N de données normales que
nous avons observées est une réalisation d’une distribution de Poisson P

(
(1− α)n

)
, et qu’un

nombre infini d’outliers ont été cachés. Dans le cadre de la classification à deux classes,
ceci correspond à l’observation d’un nombre infini d’outliers répartis étroitement autour et à
l’intérieur du support de la distribution normale, rompant la malédiction de la dimension due
à l’utilisation d’outliers uniformément répartis.

Remarque 2 (Idée fondamentale de l’approche adaptative). Ce travail correspond en fait
à l’idée simple suivante qui nous permet de diviser un noeud sans observations de la deux-
ième classe. Chaque fois que nous recherchons la meilleure scission pour un noeud t, nous
remplaçons simplement (dans la diminution d’impuretés à deux classes que nous voulons max-
imiser) la proportion de la seconde classe dans le noeud gauche tL par la proportion espérée
volume(tL)/volume(t) (idem pour le noeud droit). Cela implique qu’un noeud enfant (tL ou
tR) essaie de capturer le nombre maximum d’observations avec un volume minimal, alors que
l’autre enfant cherche le contraire.

Remarque 3 (Absence d’échantillonage). La méthode d’échantillonnage correspondante est
la suivante: pour chaque note t à diviser contenant nt observations (inliers), générer nt outliers
uniformément sur le noeud correspondant pour ensuite pouvoir optimiser un critère de division
à deux classes. Nous évitons précisément de générer ces nt outliers en utilisant la proportion
espérée volume(tL)/volume(t).

RFs à une classe. Résumons l’algorithme dans sa version la plus générique. Il y a 7
paramètres: max_samples, max_features_tree, max_features_node, γ, max_depth,
n_trees, sk.

Chaque arbre est classiquement construit sur un sous-ensemble aléatoire d’observations et de
coordonnées/variables (Ho, 1998; Panov & Džeroski, 2007). Ce sous-ensemble aléatoire est
un sous-échantillon de taille max_samples, avec max_features_tree variables choisies au
hasard sans remplacement. L’arbre est construit en minimisant une version à une classe du
critère de Gini (Gini, 1912), obtenue en remplaçant les quantités empiriques liées à la seconde
classe (non observée) par les versions théoriques. Ceux-ci correspondent à une distribution
uniforme pondérée, le poids augmentant lorsque le volume du noeud diminue, afin d’éviter des
classes fortement déséquilibrées (volume vs. observations). En effet, lorsque leur profondeur
augmente, les noeuds ont tendance à avoir des volumes plus petits tout en gardant un nombre
d’observations (normales) relativement élevé.

De nouveaux noeuds sont construits (en minimisant ce critère) jusqu’à ce que la profondeur
maximale max_depth soit atteinte. La minimisation est effectuée comme introduit dans (Amit



Chapter 11. Résumé des contributions en Français 193

& Geman, 1997), en définissant un grand nombre max_features_node de variables et en
recherchant sur une sélection aléatoire de celles-ci la meilleure division à chaque noeud. La
forêt est composée d’un nombre n_trees d’arbres. Le score (prédiction) d’un point x est alors
donné par sk(x), qui est la profondeur moyenne de x parmis la forêt.

11.6 Contributions sur scikit-learn

Comme autre contribution de cette thèse, deux algorithmes classiques de détection
d’anomalies, Isolation Forest et Local Outlier Factor ont été implémentés et fusionnés sur
scikit-learn.

Scikit-learn (Pedregosa et al., 2011), est une bibliothèque open-source fournissant des méth-
odes de machine learning bien établies. Il s’agit d’un module Python, ce dernier étant très
populaire pour la programmation scientifique, du fait de son caractère interactif de haut niveau.
Scikit-learn fournit un mécanisme de composition (à travers un objet Pipeline) pour combiner
des estimateurs, des outils de prétraitement et des méthodes de sélection de modèle de façon à
ce que l’utilisateur puisse facilement construire des algorithmes complexes. Le développement
se fait sur Github 1, un service d’hébergement de référentiel Git qui facilite la collaboration,
car le codage se fait en forte interaction avec d’autres développeurs. En raison du grand nom-
bre de développeurs, l’accent est mis sur la préservation de la maintenabilité du projet, par
exemple en évitant la duplication de code au prix d’une perte raisonnable de performance de
calcul.

Ces contributions ont été supervisées par Alexandre Gramfort et financées par le Center for
Data Science de Paris-Saclay. Il inclut également du travail sur la maintenance de scikit-
learn comme la résolution de problèmes et la relecture de code en construction par d’autre
contributeurs.

11.7 Conclusion and production scientifique

Les contributions de cette thèse peuvent être résumées comme suit. Tout d’abord, un critère
de performance adéquat appelé courbe d’excès de masse est proposée (partie 11.3.3), afin de
comparer les fonctions de score candidates. La publication correspondante est Goix et al.
(2015c):

• On Anomaly Ranking and Excess-Mass Curves. (AISTATS 2015).
Auteurs: Goix, Sabourin, and Clémençon.

Deuxièmement, des avancées dans la théorie des valeurs extrêmes multivariée sont apportées
en fournissant des bornes non asymptotiques pour l’estimation de la STDF, fonctionnelle car-
actérisant la structure de dépendance des extrêmes (partie 11.4.1). La publication correspon-
dante est Goix et al. (2015b):

• Learning the dependence structure of rare events: a non-asymptotic study. (COLT 2015).
Auteurs: Goix, Sabourin, and Clémençon.

1https://github.com/scikit-learn
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La troisième contribution consiste à développer une méthode statistique qui produit une
représentation (possiblement parcimonieuse) de la structure de dépendance des extrêmes,
tout en dérivant des bornes non asymptotiques pour évaluer la précision de la procédure
d’estimation (partie 11.4.2 ). Cette contribution inclut également un algorithme basé sur la
théorie des extrèmes multivariés qui retourne une fonction de score définie sur les régions ex-
trêmes. Cette méthodologie s’applique donc directement à la détection d’anomalies. Les pub-
lications correspondantes sont Goix et al. (2016c), Goix et al. (2015a) et Goix et al. (2016b):

• Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking.
(AISTATS 2016 and NIPS 2015 Workshop on Nonparametric Methods for Large Scale
Representation Learning).
Auteurs: Goix, Sabourin, and Clémençon.

• Sparse Representation of Multivariate Extremes with Applications to Anomaly Detec-
tion. (Under review for Journal of Multivariate Analysis).
Auteurs: Goix, Sabourin, and Clémençon.

Comme quatrième contribution, nous montrons (empiriquement) que les critères EM ou MV
sont capables de discriminer avec précision (relativement aux critères ROC ou PR) parmis
les fonctions de score, en faible dimension. Par ailleurs, nous proposons une méthodologie
basée sur du sous-échantillonnage des variables et de l’agrégation, pour faire passer à l’échelle
l’utilisation de ces critères. Les publications correspondantes sont Goix (2016) et Goix &
Thomas (2016):

• How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? (ICML
2016, Workshop on Anomaly Detection).
Auteur: Goix.

• How to Evaluate the Quality of Unsupervised Anomaly Detection Algorithms? (to be
submitted).
Auteurs: Goix and Thomas.

La cinquième contribution de cette thèse est de développer une heuristique efficace pour con-
struire des fonctions de score précises. Cela se fait en généralisant les forêts aléatoires au cadre
de la classification à une classe. Le travail correspondant (à soumettre) est Goix et al. (2016a):

• One-Class Splitting Criteria for Random Forests with Application to Anomaly Detec-
tion. (to be submitted).
Auteurs: Goix, Brault, Drougard and Chiapino.

Enfin, deux algorithmes de détection d’anomalies classiques ont été implémentés et fusionnés
sur scikit-learn. Ils sont utilisés dans cette dissertation à des fins de comparaison empirique
pour attester de la pertinence des approches mentionnées ci-dessus. Les pull requests corre-
spondant à ces deux contributions sont disponibles à l’adresse suivante:

• https://github.com/scikit-learn/scikit-learn/pull/4163 (Isolation Forest)

• https://github.com/scikit-learn/scikit-learn/pull/5279 (LOF)
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Contexte de ce travail. Cette thèse a été réalisée dans l’équipe STA (Statistiques et Appli-
cations) du département Traitement du Signal et de l’Image (TSI) de Télécom ParisTech. Les
contributions présentées dans cette thèse ont été soutenues financièrement par l’Ecole Normale
Supérieure de Cachan via un contrat doctoral pour normalien ainsi que par la chaire industrielle
"Machine Learning for Big Data" de Telecom ParisTech. Les contributions scikit-learn ont été
financées par le Center for Data Science de Paris Saclay pour ce qui est de la collaboration
avec Alexandre Gramfort et par la chaire industrielle mentionnée ci-dessus en ce qui concerne
la collaboration à l’Université de New York avec Andreas Müller.
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